Рефераты

Лекции по естественной географии - (реферат)

p>Регистрация электрических полей также помогает выявить месторождения некоторых руд. Например, хорошо выявляются сульфидные залежи, в которых происходят процессы окисления, зоны циркуляции минерализованных вод и др. Геотермия дает важнейшую количественную информацию для понимания и моделирования геодинамических процессов в геосферах и для оценки энергетики геолого-геофизических проявлений - в этом заключается фундаментальные аспекты изучения теплового поля. Но не менее важны и прикладные аспекты геотермических исследований. Они связаны, с одной стороны, с оценкой геотермальных ресурсов для их использования в энергетике, теплоснабжении, коммунальном и сельском хозяйстве, а с другой - с применением геотермического метода поисков и разведки месторождений на континентах и на акваториях в комплексе с другими геолого-геохимико-геофизическими методами.

Тепловое поле Земли первым из геофизических полей привлекло внимание человека. Самые бурные проявления термической активности - извержения вулканов - сыграли важную роль в формировании религиозных мифологических представлений о строении мира. Другая форма геотермальной активности - горячие источники - с незапамятных времен использовались человеком для хозяйственных бытовых нужд. Таким образом, тепловое поле Земли оказалось первым объектом практического использования, по-видимому, опередив даже использование геомагнитного поля, выразившееся в изобретении компаса китайскими мореплавателями. Но и предметом научных исследований тепловое поле Земли тоже стало раньше всех других полей. Началом этой стадии можно считать наблюдения за извержением Везувия в 73 г. до н. э. Плиния-Старшего, погибшего при этом и ставшего первой в истории жертвой научного энтузиазма. Но возможно, что начало этого этапа следует отодвинуть еще дальше, в третий век до н. э. , когда великий философ Эмпедокл, уединившись, поселился на склоне Этны, в башне, которая впоследствии была названа "Торре дель Философо" (Башня философа). Много веков спустя на этом месте была создана одна из итальянских вулканологических обсерваторий; этот факт характеризует преемственность науки.

Количественные методы в геотермию были введены после изобретения Г. Галилеем термометра в начале XVII века. Уже первые измерения температуры, проведенные в шахтах и рудниках, показали, что температура на глубоких горизонтах весь год неизменна и что она увеличивается с глубиной. На это своеобразие теплового режима шахт обращали внимание английский физик Р. Бойль и М. В. Ломоносов. В своем трактате "О вольном движении воздуха, в рудниках примеченном" М. В. Ломоносов писал: ".... Воздух в рудниках во всякое время целого года сохраняет равное растворение" (т. е. температуру).

Факт роста температуры с глубиной дал основание для разработки научных космогонических гипотез, первой из которых явилась атеистическая гипотеза Канта-Лапласа. Согласно этой гипотезе история планеты представлялась как ее остывание из первоначально расплавленного состояния. Как показали позднейшие расчеты, теплосодержание расплавленной Земли должно было составлять около 3·1031Дж. Впоследствии эта гипотеза вошла в противоречие с другими астрономическими и геологическими фактами и в том числе с геохимическими данными о возрасте Земли, который оказался значительно больше времени, необходимого для остывания земного шара.

В 1868 г. по инициативе английского физика У. Томсона (лорда Кельвина) измерения температур в скважинах, шахтах и рудниках были систематизированы, что позволило сделать вывод о том, что на каждые 100 м температура возрастает на 2, 5°-3, 5°С. Одновременно выяснилась необходимость углубленного изучения теоретических вопросов геотермии - природы внутриземного тепла, термической эволюции Земли, глубинного теплового потока, условий формирования гидротерм. В Земле существует несколько видов теплопередачи, так как ее оболочки имеют различную температуру, фазовое состояние и химический состав. В ядре, состоящем из окислов железа, может существовать металлическая проводимость, для которой выполняется закон Видемана-Франса о прямой пропорциональности между теплопроводностью (k) и электропроводностью (s): k = B(b/e)2·T·s,

где b - постоянная Больцмана; е - заряд электрона; Т - температура; В постоянная, равная 2, 5 для полупроводников и 3 - для металлов. Таким образом, теплопроводность ядра может быть вычислена на основании данных об его электропроводности. Сложнее обстоит дело с вычислением теплопроводности силикатной оболочки Земли. Здесь уже не применим закон Видемана-Франса, а теплопроводность сложным образом зависит от температуры, давления и химического состава. Для литосферы основную роль играет решеточная часть теплопроводности. Теория решеточной (фононной) теплопроводности кристаллических диэлектриков развита в трудах Дебая (1914), Пайерлса (1956), Лейбфрида (1954), Померанчука (1944). Согласно этой теории теплопроводность обратно пропорциональна температуре. Теплопроводность рассматривается как распространение энергии за счет колебаний атомов в кристаллических решетках. Так, по Дебаю, в кристаллах с конечными размерами существует конечное число нормальных колебаний. Энергия каждого нормального колебания не может быть произвольной, она должна определяться целым числом квантов, или фононов. При этом процесс теплопередачи можно рассматривать как обмен энергиями в "фононном газе". Теплопроводность тогда пропорциональна длине свободного пробега фононов и их скорости. В реальных кристаллах фононы рассеиваются посредством различных механизмов. В частности, при высоких температурах рассеивание происходит преимущественно на другом фононе. Наиболее существенны процессы обмена энергией между тремя фононами: один фонон аннигилирует и рождаются два других, либо два фонона исчезают и рождается третий. Есть два типа трехфононных процессов: нормальные (N-процессы), в которых импульс сохраняется, и процессы переброса (U-процессы), в которых импульс не сохраняется. Первые не дают непосредственного вклада в теплосопротивление, но меняют распределение фононов, тогда как вторые действительно ограничивают и определяют теплопроводность в идеальном неметаллическом кристалле.

В теории введено понятие дебаевской температуры (ТD), которая разделяет интервалы высокотемпературного поведения параметров от низкотемпературного. Для горных пород ТDсоставляет 900-600°С. Температура порядка 600°С достигается в Земле на глубинах 30-50 км. Следовательно, изменение поведения фононной теплопроводности в зависимости от температуры приурочено к самому верхнему слою литосферы. При высоких температурах (T>>TD) теплопроводность пропорциональна (1/Т). С понижением температуры (T

По экспериментальным данным, полученным для интервала температур от 20° до 700°С (Ф. Берч, К. Кавада), можно отметить, что для большинства пород теплопроводность убывает с температурой почти как 1/Т; при эксперименте породы были приведены к уровню нулевой пористости, так как пористость и влагонасыщенность очень влияют на теплопроводность. Причина уменьшения фононной теплопроводности с ростом температуры при Т>TDзаключается в том, что решеточное рассеивание фононов тем больше, чем больше максимальные смещения атомов от их средних положений в кристаллической решетке. Это объясняет, в частности, тот факт, что теплопроводность тел, состоящих из относительно легких атомов, больше теплопроводности тел с тяжелыми атомами, слабо между собой связанными.

Все приведенные рассуждения сделаны для бездефектных кристаллов. Различные дефекты (точечные, примесные, изотопические), а также границы в поликристаллических телах могут служить дополнительными источниками рассеивания фононов, т. е. уменьшением теплопроводности. При высоких температурах дефектами можно пренебречь, так как определяющим является рассеивание фононов процессами переброса. Но при уменьшении температур, когда влияние процессов переброса быстро падает, заметно сказываются дефекты.

В заключение рассуждений о решеточной теплопроводности приведем эмпирически полученные соотношения для базальтов, связывающие теплопроводность и температуру:

    k » 3, 1/T при Т>573 K и
    k » 1, 15/T при Т

При высоких температурах в недрах Земли (>1200°C) становятся существенными два других механизма теплопередачи: радиационный и экситонный. Радиационный теплоперенос связан с лучистым теплообменом, т. е. с передачей энергии электромагнитными колебаниями. Радиационная теплопроводность ничтожно мала на глубинах до 100-200 км и становится сравнимой с фононной теплопроводностью на больших глубинах, превосходя даже ее в верхней мантии, но убывая в нижней мантии из-за роста коэффициента поглощения излучения веществом.

Экситонная теплопроводность (по термину "экситон", т. е. квант возбуждения) связана с возбуждением электрона и "дырки" при поглощении кванта энергии, который превышает энергию связи. Экситонная теплопроводность, так же как и радиационная, пренебрежимо мала при относительно невысоких температурах, т. е. в литосфере. Но на глубинах более 500 км экситонная составляющая даже превышает радиационную и быстрее растет с глубиной.

Еще раз отметим, что в практических задачах нам важно знать фононную теплопроводность пород. Два же других вида теплопроводности нельзя игнорировать при исследовании теплового состояния и термической истории Земли как планеты. Говоря о механизмах теплопередачи, необходимо изучить такой важный для Земли процесс, как конвекция, т. е. перенос тепла самим теплоносителем. Применительно к Земле теплоносителями являются вода, пар, магма и магматические растворы. Эти теплоносители, обладая большой теплоемкостью, при своем движении перераспределяют глубинный тепловой поток, создавая положительные и отрицательные аномалии температуры и теплового потока. Если теплоперенос теплопроводностью происходит повсеместно, где существует температурный градиент, то перенос конвекцией осуществляется только там, где имеются условия для движения теплоносителей. Очевидно, что наиболее интенсивно конвекция происходит в активно развивающихся геологических структурах, где проявляются разломная тектоника, вулканизм и гидротермальная деятельность. Но даже в стабильных тектонических блоках необходимо учитывать конвективный теплоперенос в верхней активной гидродинамической зоне.

К сожалению, геотермическое поле невозможно охарактеризовать только лишь температурой недр из-за того, что температура зависит от глубины измерений, а также часто и от широты местности. Для того, чтобы нормировать температуру по глубине, введено понятие геотермического градиента (gradT). Геотермический градиент является векторной величиной и определяется из выражения:

    grad T = i dT/dx + j dT/dy + k dT/dz.

Плотность теплового потока (или, как часто называют, "тепловой поток") - это самая информативная геотермическая характеристика, так как он характеризует мощность теплового источника и величину теплопотерь с поверхности Земли. Тепловой поток коррелирует с параметрами других геофизических полей, которые также характеризуют источник соответствующих полей, например, с величинами гравитационных (Dg) и магнитных (DT) аномалий, что объясняется сходными генетическими факторами, формирующими эти аномалии. Для определения теплового потока традиционно используется метод раздельного измерения геотермического градиента и теплопроводности. Тепловой поток определяется как произведение этих величин:

    q = -k (idT/dx + jdT/dy + kdT/dz).

Тепловой поток на континентах измеряется в буровых скважинах, которые, во-первых, пригодны для измерений по своему техническому состоянию, а во-вторых, находились "в состоянии покоя" после окончания бурения по крайней мере 30-50 дней. За это время тепловые возмущения, вызванные процессами бурения и промывки, в основном рассеиваются, и температура бурового раствора становится близкой к температуре окружающих пород.

Подавляющее большинство измерений теплового потока на континентах и в океанах, полученных к настоящему времени (а это более 30 тыс. пунктов), выполнено с помощью "раздельной методики", т. е. измерений геотермического градиента и коэффициента теплопроводности. Этот метод, несмотря на два источника погрешностей, является наиболее методически разработанным, а потому и наиболее точным.

В районах с высокими тепловыми потоками, например в вулканических областях, делались попытки прямых измерений теплового потока с помощьютепломеров. К сожалению, их низкая чувствительность не позволяет использовать тепломеры в областях со средними и низкими тепловыми потоками.

Поведение физических полей Земли (гравитационного, магнитного, теплового и др. ) определяется физическими свойствами горных пород (плотностью, намагниченностью, теплопроводностью, упругостью и пр. ), которые зависят от их минералогического состава, от давления и температуры. Роль двух последних факторов неодинакова. Давление на одних и тех же глубинах практически остается постоянным, а температура значительно изменяется в зависимости от величины теплогенерации и теплового потока. В некоторых районах колебания температур могут оказывать определяющее влияние на поведение физических параметров и, следовательно, на характер физических полей. Особенно чувствительны к изменению температур электропроводность и намагниченность.

Таким образом, между распределением тепловых потоков и другими геофизическими полями должны существовать достаточно тесные связи. Они основываются, с одной стороны, на чувствительности этих полей к колебаниям физических параметров горных пород, которые определяются их литолого-петрографическими особенностями, минералогическим составом и характером залегания, а с другой - на зависимости этих параметров от температуры, изменяющейся в соответствии с величиной теплового потока.

    КОНТРОЛЬНЫЕ ВОПРОСЫ

На какие слои разделяется атмосфера? Каково распределение температур в каждом из этих слоев?

Какое значение имеет атмосфера для жизни на Земле и для происходящих на планете процессов? Охрана атмосферы.

    Какова роль биосферы? Охрана биосферы.

Основные характеристики гидросферы. Как классифицируется Мировой океан по структурно-морфологическим зонам? Дайте характеристики шельфа, континентального склона, абиссальных котловин и глубоководных впадин.

Что такое дивергентные и конвергентные океанические зоны? Каково происхождение срединно-океанических хребтов и переходных зон от океана к континенту? Каково распределение температуры, давления и солености в толще морской воды? Каково значение океана для человека? Сохранение экологического равновесия в океане.

Каковы характеристики твердых земных оболочек? Какова мощность отдельных геосфер? В чем состоит отличие континентальной от океанической коры? Что такое “литосфера” и “астеносфера”?

На какие слои делится мантия? Как ведет себя скорость сейсмических волн в каждом из этих слоев?

Какова особенность внешнего ядра по сравнению с внутренним и субъядром? Какими данными доказывается эта особенность?

Как изменяются плотности и скорости сейсмических волн в Земле? Методы планетарной геофизики. Какие геофизические поля они исследуют? Метод сейсмометрии, его методика и типы изучаемых сейсмических волн. Гравиметрический метод. Что такое редукции поля силы тяжести? Магнитное поле Земли - его происхождение и вариации.

    Что такое “теллурические токи”, их происхождение.

Что изучает геотермия? Основные параметры теплового поля Земли. Источники глубинного тепла.

Природа и источники крупнейших геофизических проявлений: вулканизм, сейсмичность (в том числе цунами), гидротермальная деятельность, торнадо

Крупнейшие геофизические катастрофы, связанные с многочисленными жертвами и разрушениями, вызываются в результате сейсмической активности литосферы, которая чаще всего проявляется в видеземлетрясений. Землетрясением называется сотрясение земной коры, вызванное естественными причинами. Они проявляются в виде подземных толчков, часто сопровождаются подземным гулом, волнообразными колебаниями почвы, образованием трещин, разрушением зданий, дорог и, что самое печальное, человеческими жертвами. Землетрясения играют заметную роль в жизни планеты. Ежегодно на Земле регистрируется свыше 1 млн. подземных толчков, что составляет в среднем около 120 толчков в час или два в минуту. Можно сказать, что земля находится в состоянии постоянного содрогания. К счастью, немногие из них бывают разрушительными и катастрофическими. В год происходит в среднем одно катастрофическое землетрясение и 100 разрушительных.

Сильные землетрясения происходят довольно редко. Из катастрофических землетрясений по разрушительной силе наиболее известны Лиссабонское (1755 г. ), Калифорнийское (1906 г. ), Тайваньское (1923 г. ), Мессинское (1908 г. ), Ганьсуйское (1920 г. ), Токийское (1923 г. ), Иранское (1935 г. ), Чилийское (1939 и 1960 г. г. ), Агадирское (1960 г. ), Мексиканское (1975 г. ) землетрясения. На территории стран СНГ к наиболее значительным следует отнести Ашхабадское (1948 г. ), Ташкентское (1966 г. ), Газлинское (1976 г. ), Спитакское (1986 г. ), Нефтегорское (1995 г. ) землетрясения.

Масштабы разрушений при крупных землетрясениях огромны. В земной коре возникают крупные дизъюнктивные дислокации. Так, при катастрофическом землетрясении 4 декабря 1957 г. в Монгольском Алтае возник разлом Богдо длиной около 270 км, а общая длина образовавшихся разломов достигла 850 км. Вот только часть из многочисленных последствий землетрясений.

    Повреждение построек:
    трескаются, рассыпаются или опрокидываются домовые трубы,

трескаются стены; сырцовые и другие кирпичные стены теряют прочность и падают обрушиваются крыши

    падают выступающие части зданий (карнизы, парапеты)
    падают внутренние полки и шкафы, содержимое вываливается,
    здания раскалываются на части и падают,
    падают и разрушаются водонапорные башни и нефтехранилища,
    обрушиваются мосты, колонны и эстакады,

становятся неровными, изгибаются и разрушаются шоссейные и железные дороги, рвутся телефонные провода и кабели; выходят из строя линии электропередачи, начинаются пожары,

разрываются водопроводные трубы, нефте- и газопроводы, трубы канализационной системы.

    Геологические последствия:
    на грунте появляются трещины, иногда зияющие,

возникают воздушные, водяные, грязевые или песчаные фонтаны; при этом образуются скопления глины или груды песка,

прекращают или изменяют свое действие некоторые родники и гейзеры; возникают новые,

    грунтовые воды становятся мутными (взбаламучиваются),

возникают оползни, грязевые и селевые потоки, обвалы; происходит разжижение почвы и песчано-глинистых пород,

происходит подводное оползание и образуются мутьевые (турбидитные) потоки, обрушиваются береговые утесы, берега рек, насыпные участки, возникают сейсмические морские волны (цунами),

срываются снежные лавины; от шельфовых ледников отрываются айсберги, образуются зоны нарушений рифтового характера с внутренними грядами и подпруженными озерами,

грунт становится неровным с участками просадки и вспучивания, на озерах возникают сейши (стоячие волны и взбалтывание волн у берегов); нарушается режим приливов и отливов,

активизируется вулканическая и гидротермальная деятельность. Землетрясения - это социальное явление, т. к. им подвержено более 10% суши, на которой проживает половина человечества. Землетрясения остаются наиболее губительными из природных катастроф - наиболее крупные из них уносят сотни тысяч жизней и оставляют следы разрушительной деятельности на тысячах км2. Из исторических данных известно, что при землетрясении 1556 г. в Шаньси погибло 830 тысяч человек; уже в наши дни, 28 июля 1976 г. в результате катастрофического землетрясения был разрушен г. Таньшань (в 150 км к востоку от Пекина), при этом погибло 655 тыс. человек.

Землетрясения вызываются внезапными, быстрыми смещениями крыльев существующих или вновь образующихся тектонических разломов; напряжения, которые при этом возникают, способны передаваться на большие расстояния. Возникновение землетрясений на крупных разломах происходит при длительном смещении в противоположные стороны тектонических блоков или плит, контактирующих по разлому. При этом силы сцепления удерживают крылья разлома от проскальзывания, и зона разлома испытывает постепенно возрастающую сдвиговую деформацию. При достижении ею некоторого предела происходит “вспарывание” разлома и смещение его крыльев. Землетрясения на вновь образующихся разломах рассматриваются как результат закономерного развития систем взаимодействующих трещин, объединяющихся в зону повышенной концентрации разрывов, в которой формируется магистральный разрыв, сопровождающийся землетрясением. Объем среды, где снимается часть тектонических напряжений и высвобождается некоторая доля накопленной потенциальной энергии деформации, называется очагом землетрясения. Количество энергии, выделяющееся при одном землетрясении, зависит главным образом от размеров сдвинувшейся поверхности разлома. Максимально известная длина разломов, вспарывающихся при землетрясении, находится в диапазоне 500-1000 км (Камчатское - 1952, Чилийское - 1960 и др. ), крылья разломов смещались при этом в стороны до 10 м. Пространственная ориентация разлома и направление смещения его крыльев получили название механизма очага землетрясения.

Центр возникновения землетрясения, т. е. то место, где началось “вспарывание” разлома, называется его фокусом или гипоцентром. Расчеты параметров гипоцентра реальных землетрясений показывают, что в первом приближении очаг представляет собой сферу, радиус которой может измеряться десятками км. Таким образом, обычно очаг землетрясения не точка, а некоторый объем, размер которого для сильных землетрясений значителен.

В очагах землетрясений возбуждаются упругие продольные Р и поперечные S сейсмические волны, распространяющиеся во все стороны. Характер их распространения достаточно сложен и определяется особенностями внутреннего строения Земли. Точка на поверхности, расположенная на кратчайшем расстоянии от очага, называется эпицентром, а точка, наиболее удаленная от очага антиэпицентром. Максимальной разрушительной силы землетрясение достигает в эпицентре, по мере удаления от эпицентра сила его убывает.

Линии равных значений силы землетрясения называются изосейстами, а зона, окружающая эпицентр и ограниченная изосейстой максимального значения, называется плейстосейстовой областью. Форма этой области целиком определяется геологическими условиями района эпицентра. Обычно форма плейстосейстовой области в горных районах простирается вдоль основного простирания горной цепи, хотя и бывают исключения из этого правила.

Для энергетической классификации землетрясений на практике пользуются его магнитудой (М или m). Под магнитудой (иногда неправильно называемой интенсивностью землетрясения по шкале Рихтера) понимается логарифм отношения максимального смещения земной поверхности в волне данного типа или максимальной скорости смещения к аналогичной величине для землетрясения, магнитуда которого условно принята равной нулю. Классификация землетрясений по магнитуде введена в 1935 г. американским сейсмологом Ч. Рихтером применительно к территории Калифорнии. В начале 40-х годов она применена Б. Гутенбергом и Рихтером для энергетической классификации землетрясений всего мира. Для расчета М используется эмпирический закон изменения максимальной амплитуды сейсмической волны (А) или скорости колебаний (А/Т) с эпицентральным расстоянием (D), т. е. расстоянием до эпицентра землетрясения - это так называемая калибровочная функцияs(D): М = lgA+sA(D) или М = lg(A/T)+sA/T(D), где Т - период волны. Максимально известное значение Мприближается к 9, 0. За год на земном шаре в среднем происходит по одному землетрясению сМ і8, 0 ; десять землетрясений с М=7, 0-7, 9; 100 - с М=6, 0-6, 9; 1000 - с М=5, 0-5, 9; 10000 - с М=4, 0-4, 9. На территории СНГ магнитуда, например Камчатского-1952 землетрясения составила 8, 5, Кеминского-1911 - 8, 2, Ашхабадского-1948 - 7, 3, Газлинского-1984 - 7, 2, Спитакского-1986 - 6, 9, Дагестанского-1970 - 6, 6, Андижанского-1902 6, 4, Ленинаканского-1926 - 5, 7, Ташкентского-1966 - 5, 1, Эстонского-1976 4, 3.

Для перехода от магнитуды землетрясения к энергии (Е) сейсмических волн обычно пользуются соотношением: lgE = 11, 8 + 1, 5ЧM. В пределах бывшего СССР для классификации землетрясений на близких расстояниях широко применяют шкалу энергетических классов (К). В большинстве случаев под классом понимается логарифм энергии (в Дж) сейсмических волн, прошедших через окружающую очаг землетрясения референц-сферу радиусом 10 км (в таком понимании класс представляет собой разновидность магнитуды). Значения К определяются с помощью специальной номограммы по сумме амплитуд волн Р и S. Сила землетрясения по ее проявлениях на поверхности Земли обычно оценивается в баллах по 10- или 12-балльной шкале. С 1952 г. в СССР принята 12-балльная сейсмическая шкала, характеристики которой приведены в табл. 5. Шкала интенсивности землетрясений

    Таблица 5
    Балл
    Краткая характеристика (по С. В. Медведеву)
    I
    Колебания почвы отмечаются приборами
    II

Ощущаются в отдельных случаях людьми, находящимися в спокойном состоянии III

    Колебания ощущаются немногими людьми
    IV

Колебания ощущаются многими людьми. Возможно дребезжание стекол V

    Качание висячих предметов. Многие спящие просыпаются
    VI
    Легкие повреждения в зданиях
    VII

Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах VIII

    Большие трещины в стенах, падение карнизов, дымовых труб
    IX

В некоторых зданиях обвалы - обрушение стен, перекрытий, кровли X

    Обвалы во многих зданиях. Трещины в грунтах шириной до 1 м
    XI

Многочисленные трещины на поверхности Земли, большие обвалы в горах XII

Полное разрушение. Волны на поверхности грунта. Значительные изменения рельефа Сопоставление 12- и 10-балльной шкал

    Таблица 6
    I
    II
    III
    IV
    V
    VI
    VII
    VIII
    IX
    X
    I
    II
    III
    IV
    V
    VI
    VII
    VIII
    IX
    X
    XI
    XII

В табл. 6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1, 4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

    Io=1, 5M-3, 51gh+3, 0.

При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соседних островных дуг известно, что усиление сейсмичности происходит каждые 5, 5 лет в каждом из блоков всей цепи островных дуг. Наиболее интересную форму эти представления получили в виде теории сейсмических брешей, предложенной для Тихоокеанского сейсмического кольца. Те места, где в ХХ в. не отмечались сильные землетрясения, рассматриваются как наиболее вероятные для возникновения сильных землетрясений в ближайшее время.

Сейсмический процесс характеризуется также группированием землетрясений. Частными случаями группирования являются: рой землетрясений; главное землетрясение с последующими толчками (афтершоками); главное землетрясение с предшествующими толчками (форшоками). Рой землетрясений - это группа (иногда очень многочисленная) мелкофокусных толчков, частота и магнитуда которых в течение определенного срока слабо меняются со временем. Самые сильные толчки распределены внутри роя случайным образом. Афтершоками, число которых может быть очень велико, сопровождаются, как правило, все более или менее сильные землетрясения. Сильнейшие афтершоки могут сопровождаться своими вторичными сериями последующих толчков. Магнитуда сильнейшего афтершока статистически на 1, 2 меньше магнитуды основного толчка. Число последующих толчков быстро убывает с глубиной очага землетрясения (глубокофокусные землетрясения афтершоками практически не сопровождаются). В ограниченных зонах перед сильными землетрясениями возникают предваряющие толчки - форшоки. Их появление на фоне длительного “сейсмического молчания” позволяет своевременно предпринять меры предосторожности.

Для регистрации и изучения землетрясений во многих странах существует сеть станций непрерывного слежения за сейсмическим состоянием Земли (или, как мы теперь называем, станций сейсмического мониторинга и прогнозирования). На станциях размещаются высокоточные приборы - сейсмографы, регистрирующие малейшие колебания земной поверхности, а также комплекс прогностических методов для предсказания землетрясений с помощью различных его“предвестников”. Сейсмограф - это очень древний прибор (из геофизической аппаратуры древнее его только компас). Первый сейсмограф был изготовлен в Китае во II веке нашей эры. Несколько остроумных конструкций было предложено в Западной Европе в XVIII и в начале XIX в. , но действительно эффективные записывающие приборы были изобретены только 50-100 лет назад, а в последние десятилетия они были значительно усовершенствованы.

Сейсмограф представляет собой колебательную систему, предназначенную для измерения и записи сейсмических движений. Колеблющийся элемент должен быть прочно прикреплен к твердому основанию, так чтобы он двигался вместе с грунтом. Обычно этот элемент демпфируется, т. е. амплитуда его колебаний ограничивается и гасится.

Конструкции разных сейсмографов в значительной степени различаются. В одних используется горизонтально подвешенный маятник, в других - обратный маятник, установленный на пружинках вертикально. Период собственных колебаний маятника зависит от его массы, демпфированности, чувствительности подвески и эти параметры могут меняться в широких пределах. Это используется на сейсмостанциях, так как одним и тем же сейсмографом невозможно записать легкий промышленный“сейсмический шум”и сильное землетрясение, при котором очень чувствительный и слабо демпфированный сейсмограф просто“зашкалит”.

В записывающем устройстве используются механические, оптические, электромагнитные элементы или их комбинации. Их назначение - передать колебания на бумагу самописца, на магнитную ленту или на магнитный диск компьютера. Амплитуда так называемого“промышленного шума”во много раз ниже, чем амплитуда даже самого слабого землетрясения. Поэтому появление первых же толчков - форшоков хорошо заметно на самописце или на дисплее компьютера. Достаточно большое усиление сейсмографов позволяет“разогнать”амплитуду колебаний грунта до визуально заметных величин. Обычная величина усиления в сейсмическом регистрационном канале - десятки-сотни тысяч раз по сравнению с реальной амплитудой колебаний грунта. Хотя возможности увеличения превышают величину 4-5 млн. раз, но“промышленный шум” накладывает ограничение на повышение усиления. Очень важна точная, до долей секунды, регистрация времени; поэтому на сейсмограммах записываются также сигналы времени, передаваемые по радиоканалу из метрологических обсерваторий (Палат точного времени).

В последние годы аппаратура существенно усовершенствовалась в связи с появлением лазерной техники и мощнейших компьютерных комплексов. В областях активной сейсмичности часто устанавливаются лазерные дальномеры на противоположных сторонах крупных разломных зон. Это делается для того, чтобы обнаружить малейший крип или подвижку склонов. Сейсмографы часто группируются, и создаются региональные сети стандартизованных сейсмографов, таких, как созданная под эгидой США и Канады Всемирная сеть стандартных сейсмографов (WWSSN). В шт. Калифорния, подверженном частым землетрясениям, имеется собственная сеть сейсмографов.

Сейсмические морские волны - цунами, иногда ошибочно называемые “приливными”волнами, часто сопровождают крупные землетрясения, происходящие в районах морского или океанического побережья. Они возникают тогда, когда энергия землетрясения передается как морскому дну, так и воде. Волны цунами характеризуются высокой скоростью и большой длиной, однако в открытом море их высота не бывает больше первых метров. С корабля в море редко можно заметить прохождение таких волн. Однако, когда эти волны выходят на мелководье, они могут стать весьма разрушительными. Высота каждой волны достигает там многих метров, потому что длина волны уменьшается из-за близости дна, как и в случае обычных волн. Соответственно энергия воды, имевшей большую глубину, концентрируется в коротком вертикальном интервале.

Цунами много раз приносили опустошение прибрежным районам. После Лиссабонского землетрясения 1755 г. высокие волны сначала осушили бухту, потом выплеснулись на берег примерно на километр, а потом смыли в море корабли, дома, мосты и людей, т. е. все, что попадалось на их пути. Цунами, возникшее в районе Алеутских островов, уничтожило 1 апреля 1946 г. маяк на мысе Датч (Аляска), расположенный на 15 м выше уровня моря. Волна проделала путь 3800 км к Гавайским островам со средней скоростью 780 км/ч. В открытом море волны имели длину 150 км. У берега их высота достигала 3-6 м. В узких заливах она вздыбливалась до отметок 10-15 м над уровнем моря. Преобразившись в движущиеся стены воды, эти волны нанесли тяжелые повреждения домам, шоссейным и железным дорогам, мостам, пристаням, волнорезам, судам и были причиной гибели 160 человек. Общий материальный ущерб на Гавайях оценивался в 25 млн. долларов (в ценах 1946 г. ). Волна достигла и берегов Калифорнии, где ее высота составляла до 4 м. После этой трагедии была организована Международная система предупреждения о движении волн цунами, с тем, чтобы сообщать в населенные пункты о грозящей им опасности.

Гигантские морские волны, возникшие у побережья Чили во время землетрясения 1960 г. , достигли Гавайев, пройдя 11000 км приблизительно за 15 часов (скорость - 730 км/час). Мореограф в Хило на Гавайских островах попеременно отмечал подъем и падение уровня воды, происходившее примерно с 30-минутным интервалом. Несмотря на предупреждение, эти волны в Хило и других местах Гавайских островов стали причиной гибели 60 человек и нанесли ущерб в 75 млн. долларов. Еще через 8 ч волны достигли Японии, в очередной раз разрушив там портовые сооружения; при этом погибли 180 человек. Жертвы и разрушения имелись также на Филиппинах, в Нов. Зеландии и в других частях Тихоокеанского кольца.

    Рассмотрим меры защиты от землетрясений.

Когда в густонаселенной местности происходит сильный подземный толчок, многие здания получают повреждения или разваливаются. Главная причина этого - низкое качество построек. Разрушительное воздействие землетрясений связано с неустойчивостью грунта, с использованием сырцового кирпича или непрочной каменной кладки, что приводит к падению крыш и печных труб, растрескиванию фундаментов и стен.

Потенциально опасны тяжелые выступающие части домов, стенки парапетов и ненужные лепные украшения. Старая известка, незакрепленная кровля и стропила, лишенные элементов жесткости лифтовые шахты и каркасы, неукрепленные лестничные колодцы и общие стены смежных домов разного размера - все это также представляет опасность. При дифференцированных движениях рвутся подземные трубопроводы всех видов.

Чтобы свести к минимуму возможные повреждения, строители должны учитывать все геологические факторы, определяющие устойчивость здания. Скальные породы идеальное основание для крупных сооружений. Следует избегать строительства на слабых грунтах, крутых склонах, насыпных землях. Нежелательно также возводить здания на морских утесах, на обрывистых берегах рек, вблизи глубоких котлованов и на участках с высоким уровнем грунтовых вод в рыхлых осадочных породах. При строительстве мостов и высоких зданий необходимо обращать особое внимание на их вес, устойчивость по отношению к горизонтальным силам и на внутреннюю уравновешенность. Доказано, что железобетонные здания сравнительно устойчивы, однако деревянные, стальные и укрепленные каменные дома также могут быть сейсмостойкими, если они хорошо сконструированы и добротно построены. Для этого применяются соответствующие элементы жесткости и крепления: связывающие скобы, подпорки и стойки, анкерные болты. Наиболее безопасной конструкцией является та, которая будет гибкой и сможет двигаться как единое целое, т. е. так, чтобы отдельные ее части не ударялись друг о друга.

Обеспечение сейсмостойкости - обязательное требование при строительстве в сейсмоопасных районах. Необходимое увеличение стоимости составляет, по инженерной оценке, менее 10%, если соответствующие проблемы решаются на стадии проектирования.

Чтобы избежать катастрофических последствий в особо сейсмоопасных районах могут быть приняты некоторые административные меры. Для контроля землепользования и типов построек, разрешенных в зонах высокой сейсмичности, должны быть обязательны ограничения, налагаемые сейсмическим районированием. Это относится, например, к районам с неустойчивыми насыпными грунтами и к районам, где развиты оползни. Строительные нормы и правила должны определять стандарты различных зданий. Учет различного уровня риска в связи с особенностями геологической обстановки, выполняемый с помощью карты сейсмической опасности должен стать обычной практикой строительных и страховых компаний. Все эти меры контроля путем районирования, совершенствования строительных норм и классификации зданий по уязвимости - особенно необходимы для предотвращения человеческих жертв и катастрофических разрушений при будущих подземных толчках в районах сейсмической опасности: по периферии Тихого океана и в Средиземноморском поясе. Серьезная проблема состоит в том, как привести ныне существующие здания в соответствие со стандартами сейсмостойкости; другая проблема - подготовка планов мероприятий по смягчению последствий разрушительных подземных толчков.

Страницы: 1, 2, 3, 4


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ