Рефераты

Проектирование локально-вычислительной сети

Проектирование локально-вычислительной сети

Введение.

На сегодняшний день в мире существует более 130 миллионов компьютеров, и

более 80 % из них объединены в различные информационно-вычислительные сети,

от малых локальных сетей в офисах, до глобальных сетей типа Internet.

Всемирная тенденция к объединению компьютеров в сети обусловлена рядом

важных причин, таких как ускорение передачи информационных сообщений,

возможность быстрого обмена информацией между пользователями, получение и

передача сообщений ( факсов, Е - Маil писем и прочего ) не отходя от

рабочего места, возможность мгновенного получения любой информации из любой

точки земного шара, а так же обмен информацией между компьютерами разных

фирм производителей работающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе

вычислительная сеть и тот новый потенциальный подъем, который при этом

испытывает информационный комплекс, а так же значительное ускорение

производственного процесса не дают нам право не принимать это к разработке

и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по

организации ИВС ( информационно-вычислительной сети ) на базе уже

существующего компьютерного парка и программного комплекса, отвечающего

современным научно-техническим требованиям, с учетом возрастающих

потребностей и возможностью дальнейшего постепенного развития сети в связи

с появлением новых технических и программных решений.

Под ЛВС понимают совместное подключение нескольких отдельных компьютерных

рабочих мест

( рабочих станций ) к единому каналу передачи данных.

Благодаря вычислительным сетям мы получили возможность одновременного

использования программ и баз данных несколькими пользователями.

Понятие локальная вычислительная сеть - ЛВС ( англ. LAN - Local Агеа

Network) относится к географически ограниченным (территориально или

производственно) аппаратно-программным реализациям, в которых не-сколько

компыотерных систем связанны друг с другом с помощью соответствующих

средств коммуникаций,

Благодаря такому соединению пользователь может взаимодействовать с другими

рабочими станциями, подключенными к этой ЛВС.

В производственной практике ЛВС играют очень большую роль.

Посредством ЛВС в систему объединяются персональные компьютеры,

расположенные на многих удаленных рабочих местах, которые используют

совместно оборудование, программные средства и информацию. Рабочие места

сотрудников перестают быть изолированными и объединяются в единую систему.

Рассмотрим преимущества, получаемые при сетевом объединении персональных

компьютеров в виде внутрипроизводственной вычислительной сети.

Разделение ресурсов

Разделение ресурсов позволяет экономно использовать ресурсы,

например, управлять периферийными устройствами, такими как лазерные

печатающие устройства, со всех присоединенных рабочих станций.

Разделение данных.

Разделение данных предоставляет возможность доступа и управления базами

данных с периферийных рабочих мест, нуждающихся в информации.

Разделение программных средств

Разделение программных средств предоставляет возможность одновременного

использования централизованных, ранее установленных программных средств.

Разделение ресурсов процессора.

При разделении ресурсов процессора возможно использование вычислительных

мощностей для обработки данных другими системами, входящими в сеть,

Предоставляемая возможность заключается в том, что на имеющиеся ресурсы не

"набрасываются" моментально, а только лишь через специальный процессор,

доступный каждой рабочей станции.

Многопользовательский режим

Многопользовательские свойства системы содействуют одновременному

использованию централизованных прикладных программных средств, ранее

установленных и управляемых, например, если пользователь системы работает с

другим заданием, то текущая выполняемая работа отодвигается на задний план.

Все ЛВС работают в одном стандарте, принятом для компьютерных сетей - в

стандарте OSI - Open System Interconnection.

Взаимодействие открытых систем (OSI)

Для того чтобы взаимодействовать, люди используют общий язык. Если они не

могут разговаривать друг с другом непосредственно, они применяют

соответствующие вспомогательные средства для передачи сообщений.

Для того чтобы привести в движение процесс передачи данных, использовали

машины с одинаковым кодированием данных и связанные одна с другой. Для

единого представления данных в линиях связи, по которым передается

информация, сформирована Международная организация по стандартизации (англ,

ISO – International Standarts Organization).

ISO предназначена для разработки модели международного коммуникационного

протокола, в рамках которой можно разрабатывать международные стандарты.

Международная организация по стандартизации (ISO) разработала базовую

модель взаимодействия открытых систем OSI. Эта модель является

международным стандартом для передачи данных.

Модель содержит семь отдельных уровней:

Уровень 1: физический - битовые протоколы передачи информации;

Уровень 2: канальный - формирование кадров, управление доступом к среде;

Уровень 3: сетевой - маршрутизация, управление потоками данных;

Уровень 4: транспортный - обеспечение взаимодействия удаленных процессов;

Уровень 5: сеансовый - поддержка диалога между удаленными процессами;

Уровень 6: представительский - интерпретация передаваемых данных;

Уровень 7: прикладной - пользовательское управление данными,

Основная идея этой модели заключается в том, что каждому уровню отводится

конкретная роль, в том числе и транспортной среде. Благодаря этому общая

задача передачи данных расчленяется на отдельные легко обозримые задачи.

Необходимые соглашения для связи одного уровня с выше- и нижерасположенными

называют протоколом.

Так как пользователи нуждаются в эффективном управлении, система

вычислительной сети представляется как комплексное строение, которое

координирует взаимодействие задач пользователей.

С учетом вышеизложенного можно вывести следующую уровневую модель с

административными функциями, выполняющимися в пользовательском прикладном

уровне.

Отдельные уровни базовой модели проходят в направлении вниз от источника

данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных

(от уровня 1 к уровню 7). Пользовательские данные передаются в

нижерасположенный уровень вместе со специфическим для уровня заголовком до

тех пор, пока не будет достигнут последний уровень.

На приемной стороне поступающие данные анализируются и, по мере надобности,

передаются далее в вышерасположенный уровень, пока информация не будет

передана в пользовательский прикладной уровень.

Уровень 1 Физический

На физическом уровне определяются электрические, механические,

функциональные и процедурные параметры для физической связи в системах.

Физическая связь и неразрывная с ней эксплуатационная готовность являются

основной функцией 1-го уровня, Стандарты физического уровня включают

рекомендации V.24 МККТТ (ССIТТ), ЕIА RS232 и Х.21. Стандарт ISDN

(Integrated Services Digital Network) в будущем сыграет определяющую роль

для функций передачи данных. В качестве среды передачи данных используют

трехжильный медный провод (экранированная витая пара), коаксиальный кабель,

оптоволоконный проводник и радиорелейную линию.

Уровень 2 Канальный

Канальный уровень формирует из данных, передаваемых 1-м уровнем, так

называемые "кадры" последовательности кадров. На этом уровне осуществляются

управление доступом к передающей среде, используемой несколькими ЭВМ,

синхронизация, обнаружение и исправление ошибок.

Уровень 3 Сетевой

Сетевой уровень устанавливает связь в вычислительной сети между двумя

абонентами. Соединение происходит благодаря функциям маршрутизации, которые

требуют наличия сетевого адреса в пакете. Сетевой уровень должен также

обеспечивать обработку ошибок, мультиплексирование, управление потоками

данных. Самый известный стандарт, относящийся к этому уровню - рекомендация

Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов).

Уровень 4 Транспортный

Транспортный уровень поддерживает непрерывную передачу данных между двумя

взаимодействующими друг с другом пользовательскими процессами. Качество

транспортировки, безошибочность передачи, независимость вычислительных

сетей, сервис транспортировки из конца в конец, минимизация затрат и

адресация связи гарантируют непрерывную и безошибочную передачу данных.

Уровень 5 Сеансовый

Сеансовый уровень координирует прием, передачу и выдачу одного сеанса

связи. Для координации необходимы контроль рабочих параметров, управление

потоками данных промежуточных накопителей и диалоговый контроль,

гарантирующий передачу, имеющихся в распоряжении данных. Кроме того,

сеансовый уровень содержит дополнительно функции управления паролями,

подсчета платы за пользование ресурсами сети, управления диалогом,

синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок

в нижерасположенных уровнях.

Уровень 6 Представительский

Уровень представления данных предназначен для интерпретации данных; а также

подготовки данных для пользовательского прикладного уровня.

На этом уровне происходит преобразование данных из кадров, используемых для

передачи данных в экранный формат или формат для печатающих устройств

оконечной системы.

Уровень 7 Прикладной

В прикладном уровне необходимо предоставить в распоряжение пользователей

уже переработанную информацию. С этим может справиться системное и

пользовательское прикладное программное обеспечение.

ГЛАВА 1.

1.1 Анализ существующей ЛВС.

Структура существующей локально- вычислительной сети ИРЦ ОАО “Ростелеком

ММТ, представленная на рисунке 1.1, базируется, в основном, на

концентраторах разделяемого Ethernet 10 Base-T и на коммутаторе BayStack

301 на 22 порта 10 Base-T и 2 порта Fast Ethernet 100 Base-TX.

Необходимость построения ЛВС ИРЦ заключалась в упрощении процесса получения

и обработки информации, а именно данных о междугородних и международных

телефонных переговорах по предприятиям и квартирному сектору.

Вся информация по переговорам, накапливаемая на телефонных узлах,

поступает в информационно-расчетный центр, где и происходит ее обработка. А

именно:

. выставление счетов за междугородние и международные телефонные переговоры

по предприятиям;

. выставление счетов за междугородние и международные телефонные переговоры

по квартирному сектору;

. проверка задолженности абонентов;

. предоставление услуги “ Экспресс счет ”;

. ведение и оформление претензий.

Поступившая информация хранится на серверах, находящихся в Машинном зале

ИРЦ.

Сервер 1 Tricord на базе процессора 486 (оперативная память

16 Mb, объем жесткого диска 40 Gb, ОС- Novell 3.2)

Информация, хранимая на сервере:

- справочная информация по выставлению счетов за Международные ТР и

Междугородние ТР по предприятиям

- массивы счетов за один год

Сервер 2 Tricord на базе процессора 486 (оперативная память

16 Mb, объем жесткого диска 2 Gb, ОС- Novell 4.0)

Информация, хранимая на сервере:

- печать счетов квартирного сектора

- ввод оплаты

С приходом новых технологий обмена данными, процесс обработки информации

значительно ускорился и занимает намного меньше времени, нежели до этого.

Следовательно, происходит увеличение обработанной информации, отсюда

повышается и производительность.

Структура локально- вычислительной сети ИРЦ построена на технологии

Ethernet 10 Base-T.

Что в свое время обеспечивало хорошую производительность, но со временем

произошло увеличение числа абонентов, пользующихся услугами междугородней

международной связи, вследствие чего возникли проблемы с сетевой

архитектурой:

. пользователям не хватает пропускной способности сети;

. малая скорость ответа серверов на запросы;

. необходим переход на более скоростное чем 10 Мбит/с выделенное

соединение, без замены всего оборудования;

. обеспечение высокой надежности сети;

. удобное управление сетью;

. увеличение объема получаемой информации.

Для решения этих проблем возникла необходимость усовершенствования локально-

вычислительной сети ИРЦ, что и рассматривается в данном дипломном проекте.

1.2 Анализ предложений по ее развитию.

Новый вариант построения локально-вычислительной сети информационно-

расчетного центра филиала ОАО “Ростелеком”- ММТ представляет собой:

. Увеличение объема памяти серверов;

. Переход на более скоростную, чем Ethernet, технологию Fast Ethernet 100

Мбит/с;

. Организацию Виртуальных сетей (VLAN), трафик которых на канальном уровне

полностью изолирован от других узлов сети;

. Осуществление Агрегирования каналов (Транкинга) используя несколько

активных параллельных каналов одновременно для повышения пропускной

способности и надежности сети.

В проекте нового варианта построения ЛВС ИРЦ сервера представляют собой:

Сервер 1 Hewlett Packard LH3 (оперативная память 256 Mb, объем жесткого

диска 140 Gb, ОС- Novell 3.2)

Информация, хранимая на сервере:

- справочная информация по выставлению счетов за Международные ТР и

Междугородние ТР по предприятиям;

- массивы счетов за пять лет;

- комплекс прикладного программного обеспечения;

- просмотр базы;

- выписка повторного счета;

- внесение оплаты;

- “экспресс счет” по предприятиям;

- ведение и оформление претензий.

Сервер 2 ALR 8200 (оперативная память 256 Mb, объем жесткого диска 50 Gb,

ОС- Novell 5.0)

Информация, хранимая на сервере:

- печать счетов квартирного сектора;

- ввод оплаты;

- ввод ярлыков коммутаторных залов;

- картотека телефонов с адресными данными.

Сервер 3 ALR 8200 (оперативная память 1 Gb, объем жесткого диска 100 Gb, ОС-

Windows NT)

Информация, хранимая на сервере:

- лицевые карточки абонентов квартирного сектора;

- ведение договоров;

- печать “экспресс счета”;

- проверка задолженностей.

1.2.1 Анализ совершенствования технологии Ethernet.

Основное направление совершенствования технологий локальных сетей связано с

технологией Ethernet и это не удивительно.

В соответствии с данными исследовательской компании International Data

Corporation (IDC) более 85% всех сетевых соединений к концу 1997 года

являлись соединениями Ethernet, представляя более чем 118 миллионов

присоединенных к сетям персональных компьютеров, рабочих станций и

серверов. Поэтому создание высокоскоростных технологий, максимально

совместимых с Ethernet, представляло собой важную задачу сетевой индустрии.

Решение этой задачи сулило огромные выгоды и преимущества для сетевых

пользователей, интеграторов, администраторов, эксплуатации и, естественно,

для производителей.

В 1995 году комитет IEEE принял спецификацию Fast Ethernet в качестве

стандарта. Сетевой мир получил технологию, с одной стороны, решающую самую

болезненную проблему- нехватку пропускной способности на нижнем уровне

сети, а с другой стороны, очень легко внедряющуюся в существующие сети

Ethernet.

Легкость внедрения Fast Ethernet объясняется следующими факторами:

. Общий метод доступа позволяет использовать в сетевых адаптерах Fast

Ethernet до 80% микросхем адаптеров Ethernet;

. Драйверы также содержат большую часть кода для адаптеров Ethernet, а

отличия вызваны новым методом кодирования данных на линии (4B/5B или

8B/6T) и наличием полнодуплексной версии протокола;

. Формат кадра остался прежним, что дает возможность анализаторам

протоколов применять к сегментам Fast Ethernet те же методы анализа, что

и для сегментов Ethernet, лишь механически повысив скорость работы.

Отличия Fast Ethernet от Ethernet сосредоточены в основном на физическом

уровне. Разработчики стандарта Fast Ethernet учли тенденции развития

структурированных кабельных систем.

Они реализовали физический уровень для всех популярных типов кабелей,

входящих в стандарты на структурированные (такие как EIA/TIA 568A) и

реально выпускаемые кабельные системы.

Существует три варианта физического уровня Fast Ethernet:

. 100Ваsе-ТХ для двух парного кабеля на неэкранированной витой паре UTP

Category 5 (или экранированной витой паре STP Туре1);

. 100Ваsе-Т4 для четырех парного кабеля на неэкранированной витой паре UTP

Category 3,4,5;

. 100Ваsе-FХ для многомодового оптоволоконного кабеля.

При создании сегментов Fast Ethernet с разделяемой средой нужно

использовать концентраторы. При этом максимальный диаметр сети колеблется

от 136 до 205 метров, а количество концентраторов в сегменте ограничено

одним или двумя, в зависимости от их типа.

При использовании двух концентраторов расстояние между ними не может

превышать 5—10 метров. Так что существование 2-х устройств мало что дает,

кроме увеличения количества портов - расстояние между компьютерами сегмента

от добавления второго концентратора практически не изменяется.

В разделяемом сегменте Fast Ethernet нет возможности обеспечить какие-либо

преимущества при обслуживании трафика приложений реального времени. Любой

кадр получает равные шансы захватить среду передачи данных в соответствии с

логикой алгоритма CSMA/CD.

Коммутируемый вариант Fast Ethernet позволяет увеличить связи между узлами,

работающими в полнодуплексном режиме и использующими многомодовый

оптоволоконный кабель, до 2 км.

У технологии Fast Ethernet есть несколько ключевых свойств, которые

определяют области и ситуации ее эффективного применения.

К этим свойствам относятся:

. большая степень преемственности по отношению к классическому 10-

мегабитному Ethernet;

. высокая скорость передачи данных - 100 Мбит/с;

. возможность работать на всех основных типах современной кабельной

проводки – UTP Category 5, UTP Category 3, STP Tуре 1,

многомодовом оптоволокне.

Наличие многих общих черт у технологий Fast Ethernet и Ethernet дает

простую общую рекомендацию. Fast Ethernet, следует применять в тех

организациях и в тех частях сетей, где до этого широко применялся 10-

мегабитный Ethernet. Однако сегодняшние условия или же ближайшие

перспективы требуют более высокой пропускной способности в таких частях

сетей. При этом сохраняется весь опыт обслуживающего персонала, привыкшего

к особенностям и типичным неисправностям сетей Ethernet. Кроме того, можно

по-прежнему использовать средства анализа протоколов, работающие с агентами

MIB-II, RMON MIB и привычными форматами кадров.

В семействе Ethernet технология Fast Ethernet занимает промежуточное

положение между Ethernet 10 Мбит/с и Gigabit Ethernet.

Поэтому в крупной локальной сети, в которой оправдано создание трех уровней

иерархии сетевых устройств, технологии Fast Ethernet отведен средний

уровень - сетей отделов. Но это, конечно, не исключает ее применения и на

нижних этажах, в сетях рабочих групп, причем не только для подключения

серверов, но и быстрых рабочих станций.

При использовании агрегированных транковых соединений, обеспечивающих

скорости N x 100 Мбит/с, технология Fast Ethernet может применяться и для

создания магистральных связей в сетях масштаба здания и даже кампуса.

Что же касается разделяемых сегментов Fast Ethernet, то они конкурируют по

стоимости и возможностям с коммутируемыми сегментами Ethernet 10 Мбит/с.

При наличии 10 рабочих станций в сегменте и в том, и в другом случаях

каждой рабочей станции достается в среднем по 10 Мбит/с.

Преимущественная область применения разделяемых сегментов Fast Ethernet

достаточно ясна.

Это объединение близко расположенных друг от друга компьютеров, трафик

которых имеет ярко выраженный пульсирующий характер с большими, но редкими

всплесками.

Большие всплески хорошо передаются незагруженным каналом 100 Мбит/с, а

редкое их возникновение приводит к возможности

совместного использования канала без частого возникновения коллизий.

Типичным примером такого трафика является трафик файлового сервиса,

электронной почты, сервиса печати, Коммутируемые сегменты Ethernet 10

Мбит/с могут предоставить каждому узлу гарантированные 10 Мбит/с, но не

больше. Так что для тех случаев, когда важно изредка предоставлять

конечному узлу больше 10 Мбит/с, разделяемые сегменты Fast Ethernet

оказываются предпочтительным решением.

Выходит, что переход от технологии Ethernet 10 Мбит/с к технологии Fast

Ethernet 100 Мбит/с все таки необходим.

Структура существующей локально- вычислительной сети ИРЦ ОАО “Ростелеком

ММТ базируется, в основном, на концентраторах разделяемого Ethernet 10 Base-

T и на коммутаторе BayStack 301 на 22 порта 10 Base-T и 2 порта Fast

Ethernet 100 Base-TX.

Необходимость построения ЛВС ИРЦ заключалась в упрощении процесса получения

и обработки информации, а именно данных о междугородних и международных

телефонных переговорах по предприятиям и квартирному сектору.

Вся информация по переговорам, накапливаемая на телефонных узлах,

поступает в информационно-расчетный центр, где и происходит ее обработка. А

именно:

. выставление счетов за междугородние и международные телефонные переговоры

по предприятиям

. выставление счетов за междугородние и международные телефонные переговоры

по квартирному сектору

. проверка задолженности абонентов

. предоставление услуги “ Экспресс счет ”

. ведение и оформление претензий

и т. пр.

Поступившая информация хранится на серверах, находящихся в Машинном зале

ИРЦ.

Сервер 1 Tricord на базе процессора 486 (оперативная память

16 Mb, объем жесткого диска 40 Gb, ОС- Novell 3.2)

Информация, хранимая на сервере:

- справочная информация по выставлению счетов за Международные ТР и

Междугородние ТР по предприятиям

- массивы счетов за один год

Сервер 2 Tricord на базе процессора 486 (оперативная память

16 Mb, объем жесткого диска 2 Gb, ОС- Novell 4.0)

Информация, хранимая на сервере:

- печать счетов квартирного сектора

- ввод оплаты

С приходом новых технологий обмена данными, процесс обработки информации

значительно ускорился и занимает намного меньше времени, нежели до этого.

Следовательно, происходит увеличение обработанной информации, отсюда

повышается и производительность.

Структура локально- вычислительной сети ИРЦ построена на технологии

Ethernet 10 Base-T.

Что в свое время обеспечивало хорошую производительность, но со временем

произошло увеличение числа абонентов, пользующихся услугами междугородней

международной связи, вследствие чего возникли проблемы с сетевой

архитектурой:

. пользователям не хватает пропускной способности сети;

. малая скорость ответа серверов на запросы;

. необходим переход на более скоростное чем 10 Мбит/с выделенное

соединение, без замены всего оборудования;

. обеспечение высокой надежности сети;

. удобное управление сетью

. увеличение объема получаемой информации

Для решения этих проблем возникла необходимость усовершенствования локально-

вычислительной сети ИРЦ, что и рассматривается в данном дипломном проекте.

Новый вариант построения локально-вычислительной сети информационно-

расчетного центра филиала ОАО “Ростелеком”- ММТ представляет собой:

. Увеличение объема памяти серверов;

. Переход на более скоростную, чем Ethernet, технологию Fast Ethernet 100

Мбит/с;

. Организацию Виртуальных сетей (VLAN), трафик которых на канальном уровне

полностью изолирован от других узлов сети;

. Осуществление Агрегирования каналов (Транкинга) используя несколько

активных параллельных каналов одновременно для повышения пропускной

способности и надежности сети.

В проекте нового варианта построения ЛВС ИРЦ сервера представляют собой:

Сервер 1 Hewlett Packard LH3 (оперативная память 256 Mb, объем жесткого

диска 140 Gb, ОС- Novell 3.2)

Информация, хранимая на сервере:

- справочная информация по выставлению счетов за Международные ТР и

Междугородние ТР по предприятиям

- массивы счетов за пять лет

+

- комплекс прикладного программного обеспечения

- просмотр базы

- выписка повторного счета

- внесение оплаты

- “экспресс счет” по предприятиям

- ведение и оформление претензий

Сервер 2 ALR 8200 (оперативная память 256 Mb, объем жесткого диска 50 Gb,

ОС- Novell 5.0)

Информация, хранимая на сервере:

- печать счетов квартирного сектора

- ввод оплаты

+

- ввод ярлыков коммутаторных залов

- картотека телефонов с адресными данными

Сервер 3 ALR 8200 (оперативная память 1 Gb, объем жесткого диска 100 Gb, ОС-

Windows NT)

Информация, хранимая на сервере:

- лицевые карточки абонентов квартирного сектора

- ведение договоров

- печать “экспресс счета”

- проверка задолженностей

Что же дает нам совершенствование технологии Ethernet?

Основное направление совершенствования технологий локальных сетей связано с

технологией Ethernet и это не удивительно.

В соответствии с данными исследовательской компании International Data

Corporation (IDC) более 85% всех сетевых соединений к концу 1997 года

являлись соединениями Ethernet, представляя более чем 118 миллионов

присоединенных к сетям персональных компьютеров, рабочих станций и

серверов. Поэтому создание высокоскоростных технологий, максимально

совместимых с Ethernet, представляло собой важную задачу сетевой индустрии.

Решение этой задачи сулило огромные выгоды и преимущества для сетевых

пользователей, интеграторов, администраторов, эксплуатации и, естественно,

для производителей.

В 1995 году комитет IEEE принял спецификацию Fast Ethernet в качестве

стандарта. Сетевой мир получил технологию, с одной стороны, решающую самую

болезненную проблему- нехватку пропускной способности на нижнем уровне

сети, а с другой стороны, очень легко внедряющуюся в существующие сети

Ethernet.

Легкость внедрения Fast Ethernet объясняется следующими факторами:

. Общий метод доступа позволяет использовать в сетевых адаптерах Fast

Ethernet до 80% микросхем адаптеров Ethernet;

. Драйверы также содержат большую часть кода для адаптеров Ethernet, а

отличия вызваны новым методом кодирования данных на линии (4B/5B или

8B/6T) и наличием полнодуплексной версии протокола;

. Формат кадра остался прежним, что дает возможность анализаторам

протоколов применять к сегментам Fast Ethernet те же методы анализа, что

и для сегментов Ethernet, лишь механически повысив скорость работы.

Отличия Fast Ethernet от Ethernet сосредоточены в основном на физическом

уровне. Разработчики стандарта Fast Ethernet учли тенденции развития

структурированных кабельных систем.

Они реализовали физический уровень для всех популярных типов кабелей,

входящих в стандарты на структурированные (такие как EIA/TIA 568A) и

реально выпускаемые кабельные системы.

Существует три варианта физического уровня Fast Ethernet:

. 100Ваsе-ТХ для двух парного кабеля на неэкранированной витой паре UTP

Category 5 (или экранированной витой паре STP Туре1);

. 100Ваsе-Т4 для четырех парного кабеля на неэкранированной витой паре UTP

Category 3,4,5;

. 100Ваsе-FХ для многомодового оптоволоконного кабеля.

При создании сегментов Fast Ethernet с разделяемой средой нужно

использовать концентраторы. При этом максимальный диаметр сети колеблется

от 136 до 205 метров, а количество концентраторов в сегменте ограничено

одним или двумя, в зависимости от их типа. При использовании двух

концентраторов расстояние между ними не может превышать 5—10 метров. Так

что существование 2-х устройств мало что дает, кроме увеличения количества

портов - расстояние между компьютерами сегмента от добавления второго

концентратора практически не изменяется.

В разделяемом сегменте Fast Ethernet нет возможности обеспечить какие-либо

преимущества при обслуживании трафика приложений реального времени. Любой

кадр получает равные шансы захватить среду передачи данных в соответствии с

логикой алгоритма CSMA/CD.

Коммутируемый вариант Fast Ethernet позволяет увеличить связи между узлами,

работающими в полнодуплексном режиме и использующими многомодовый

оптоволоконный кабель, до 2 км.

У технологии Fast Ethernet есть несколько ключевых свойств, которые

определяют области и ситуации ее эффективного применения.

К этим свойствам относятся:

. большая степень преемственности по отношению к классическому 10-

мегабитному Ethernet;

. высокая скорость передачи данных - 100 Мбит/с;

. возможность работать на всех основных типах современной кабельной

проводки – UTP Category 5, UTP Category 3, STP Tуре 1,

многомодовом оптоволокне.

Наличие многих общих черт у технологий Fast Ethernet и Ethernet дает

простую общую рекомендацию. Fast Ethernet, следует применять в тех

организациях и в тех частях сетей, где до этого широко применялся 10-

мегабитный Ethernet. Однако сегодняшние условия или же ближайшие

перспективы требуют более высокой пропускной способности в таких частях

сетей. При этом сохраняется весь опыт обслуживающего персонала, привыкшего

к особенностям и типичным неисправностям сетей Ethernet. Кроме того, можно

по-прежнему использовать средства анализа протоколов, работающие с агентами

MIB-II, RMON MIB и привычными форматами кадров.

В семействе Ethernet технология Fast Ethernet занимает промежуточное

положение между Ethernet 10 Мбит/с и Gigabit Ethernet. Поэтому в крупной

локальной сети, в которой оправдано создание трех уровней иерархии сетевых

устройств, технологии Fast Ethernet отведен средний уровень - сетей

отделов. Но это, конечно, не исключает ее применения и на нижних этажах, в

сетях рабочих групп, причем не только для подключения серверов, но и

быстрых рабочих станций. При использовании агрегированных транковых

соединений, обеспечивающих скорости N x 100 Мбит/с, технология Fast

Ethernet может применяться и для создания магистральных связей в сетях

масштаба здания и даже кампуса.

Что же касается разделяемых сегментов Fast Ethernet, то они конкурируют по

стоимости и возможностям с коммутируемыми сегментами Ethernet 10 Мбит/с.

При наличии 10 рабочих станций в сегменте и в том, и в другом случаях

каждой рабочей станции достается в среднем по 10 Мбит/с. Преимущественная

область применения разделяемых сегментов Fast Ethernet достаточно ясна. Это

объединение близко расположенных друг от друга компьютеров, трафик которых

имеет ярко выраженный пульсирующий характер с большими, но редкими

всплесками.

Большие всплески хорошо передаются незагруженным каналом 100 Мбит/с, а

редкое их возникновение приводит к возможности совместного использования

канала без частого возникновения коллизий. Типичным примером такого трафика

является трафик файлового сервиса, электронной почты, сервиса печати,

Коммутируемые сегменты Ethernet 10 Мбит/с могут предоставить каждому узлу

гарантированные 10 Мбит/с, но не больше. Так что для тех случаев, когда

важно изредка предоставлять конечному узлу больше 10 Мбит/с, разделяемые

сегменты Fast Ethernet оказываются предпочтительным решением.

Выходит, что переход от технологии Ethernet 10 Мбит/с к технологии Fast

Ethernet 100 Мбит/с все таки необходим.

ГЛАВА 2.

2.1. Разработка структуры ЛВС и определение состава

используемых программно-аппаратных средств.

Локально- вычислительная сеть информационно-расчетного центра филиала ОАО

“Ростелеком”- ММТ в новом варианте построения отличается от старого

варианта, рисунок 2.1.

Необходимость построения нового варианта локально- вычислительной сети

возникла из-за проблем возникших в старой сетевой архитектуре:

. пользователям не хватает пропускной способности сети;

. малая скорость ответа серверов на запросы;

. необходимость перехода на более скоростное чем 10 Мбит/с выделенное

соединение, без замены всего оборудования;

. обеспечение высокой надежности сети;

. удобное управление сетью

Вследствие этих проблем новый вариант построения локально-вычислительной

сети информационно-расчетного центра филиала ОАО “Ростелеком”- ММТ

представляет из себя:

. Переход на более скоростную, чем Ethernet, технологию Fast Ethernet 100

Мбит/с;

. Организацию Виртуальных сетей (VLAN), трафик которых на канальном уровне

полностью изолирован от других узлов сети;

. Осуществление Агрегирования каналов (Транкинга) используя несколько

активных параллельных каналов одновременно для повышения пропускной

способности и надежности сети.

2.1.1 Переход от Ethernet к Fast Ethernet.

Технология Fast Ethernet является эволюционным развитием классической

технологии Ethernet. Ее основными достоинствами являются:

. увеличение пропускной способности сегментов сети до 100 Мб/c;

. сохранение метода случайного доступа Ethernet;

. сохранение звездообразной топологии сетей и поддержка традиционных сред

передачи данных - витой пары.

Указанные свойства позволяют осуществлять постепенный переход от сетей

10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к

скоростным сетям, сохраняющим значительную преемственность с хорошо

знакомой технологией: Fast Ethernet не требует коренного переобучения

персонала и замены оборудования во всех узлах сети.

Сегодня все чаще и чаще возникают повышенные требование к пропускной

способности каналов между клиентами сети и серверами. Это происходит по

разным причинам:

. повышение производительности клиентских компьютеров;

. увеличение числа пользователей в сети;

. появление приложений, работающих с мультимедийной информацией, которая

хранится в файлах очень больших размеров;

. увеличение числа сервисов, работающих в реальном масштабе времени.

Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

[pic]

Рис.2.1.1 Отличия стека протоколов 100Base-T от 10Base-T

Структура физического уровня.

Для технологии Fast Ethernet разработаны различные варианты физического

уровня, отличающиеся не только типом кабеля и электрическими параметрами

импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом

кодирования сигналов и количеством используемых в кабеле проводников.

Поэтому физический уровень Fast Ethernet имеет более сложную структуру, чем

классический Ethernet.

[pic]

Рис 2.1.2 Структура физического уровня Fast Ethernet

Физический уровень состоит из трех подуровней:

1. Уровень согласования (reconciliation sublayer);

2. Независимый от среды интерфейс (Media Independent Interface, MII);

3. Устройство физического уровня (Physical layer device, PHY).

Устройство физического уровня (PHY) обеспечивает кодирование данных,

поступающих от MAC-подуровня для передачи их по кабелю определенного типа,

синхронизацию передаваемых по кабелю данных, а также прием и декодирование

данных в узле-приемнике.

Интерфейс MII поддерживает независимый от используемой физической среды

способ обмена данными между MAC-подуровнем и подуровнем PHY.

Этот интерфейс аналогичен по назначению интерфейсу AUI классического

Ethernet за исключением того, что интерфейс AUI располагался между

подуровнем физического кодирования сигнала (для любых вариантов кабеля

использовался одинаковый метод физического кодирования - манчестерский код)

и подуровнем физического присоединения к среде, а интерфейс MII

располагается между MAC-подуровнем и подуровнями кодирования сигнала,

которых в стандарте Fast Ethernet три - FX, TX и T4.

2.1.2 Организация Виртуальных сетей (VLAN)

Виртуальные локальные сети стали сегодня основным механизмом структуризации

локальных сетей, построенных на коммутаторах. В коммутируемой структуре без

физических границ виртуальные локальные сети позволяют использовать

привычные методы построения маршрутизируемых сетей, но на новой, более

гибкой программируемой основе.

Коммутаторы (имеются в виду классические коммутаторы второго уровня) могут

повысить пропускную способность сети, но не могут создать надежные барьеры

на пути ошибочного и нежелательного трафика. Классическим примером такого

трафика может служить трафик, создаваемый широковещательными пакетами

Страницы: 1, 2, 3, 4


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ