Рефераты

Расчет тяговых характеристик тепловозов с электрической передачей и электровозов

p align="left">

Рис.3.2.

- касательная сила тяги Fр;

- сила тяги, развиваемая ТЭД, Fкд=F1 ;

- сила сцепления колеса с рельсом Fсц

Боксование приводит к интенсивному износу рабочих поверхностей колеса и рельса, разрушению вращающихся деталей якоря ТЭД под действием центробежных сил, возникновению кругового огня на коллекторе ТЭД и другим опасным явлениям. Чтобы не допускать их, установлены технические условия устойчивого движения локомотива, которые описываются неравенством [11]

Fкmax ?о.Pсц, (3.3)

где Fкmax - максимально допустимая касательная сила тяги локомотива;

?о - потенциальный (максимальный) коэффициент сцепления;

Pсц - сцепной вес локомотива (вес, приходящийся на движущие колесные пары и участвующий в создании силы тяги).

Pсц = 9,81.nос.2П, кН, (3.4)

где 2П - осевая нагрузка локомотива, т (исходные данные).

Неравенство (3.3) выражает основной закон локомотивной тяги: для обеспечения устойчивости управляемого движения локомотива окружные усилия на ободах движущих колес, создаваемые тяговыми двигателями, не должны превосходить силу сцепления колес с рельсами.

Коэффициент сцепления, а следовательно и сила сцепления, являются случайными величинами, на которые оказывают влияние многочисленные факторы: качество ремонта и содержания локомотивов, метеорологические условия поездки, текущее состояние пути и др. Для локомотивов одной серии при одинаковой скорости движения разброс возможных значений коэффициента сцепления относительно его среднего значения достигает 50% .

Поэтому для обеспечения устойчивости локомотивов против боксования устанавливают так называемый расчетный коэффициент сцепления ?к, величина которого меньше потенциального ?о. При этом сила тяги по сцеплению составляет

Fксц= ?к.Pсц, кН. (3.5)

Расчетный (нормативный) коэффициент сцепления локомотива ?к определяют экспериментальным путем и задают так, чтобы обеспечить практически приемлемую надежность движения полновесных поездов (поездов расчетной массы) по тяжелым подъемам при плохих условиях сцепления.

4. Назначение и конструкция тяговых электродвигателей локомотивов

4.1. Назначение тяговых электродвигателей

Тяговый электродвигатель (ТЭД) локомотива предназначен для преобразования электрической энергии в механическую, необходимую для вращения колесной пары.

Источником электроэнергии для движения тепловоза - автономного локомотива - служит дизель-генераторная установка (рис.3.1). Механическая энергия вращения коленчатого вала дизеля Д сообщается тяговому генератору ТГ и преобразуется в электрическую. Электрическая энергия от генератора поступает в тяговые электрические двигатели ТЭД, которые кинематически связаны с движущими колесными парами КП и приводят их во вращение.

На неавтономных локомотивах, которыми являются электровозы, для питания тяговых двигателей используется электроэнергия, вырабатываемая на электростанциях и передаваемая ТЭД по линиям электропередачи через тяговые подстанции и контактную сеть. Будучи подключенным к электростанции, то есть практически неограниченному источнику энергии, электровоз может развивать повышенную мощность, ограниченную только мощностью ТЭД. Поэтому мощность электровоза почти в 2 раза больше, чем тепловоза равной массы.

Рис.4.1. Схема преобразования энергии на тепловозе

На всех локомотивах привод колесной пары от ТЭД осуществляется через зубчатый редуктор колесно-моторного блока. Наиболее распространенным в настоящее время типом подвешивания ТЭД у грузовых тепловозов и электровозов является опорно-осевое подвешивание, при котором ТЭД с одной стороны опирается на ось колесной пары через моторно-осевые подшипники, а с другой стороны - на раму тележки через комплект пружин [7]. Неизменное расстояние между центрами вала двигателя и оси колесной пары называют централью Ц (рис.4.2).

Так как ТЭД служит для преобразования электрической энергии в механическую, то он входит в состав как электрической, так и механической части локомотива.

4.2. Конструкция основных узлов и элементов тягового электрического двигателя тепловоза

ТЭД постоянного тока состоит из неподвижного статора: остова с расположенными на его внутренней поверхности главными и добавочными полюсами - и вращающегося якоря (ротора). Вал якоря опирается на подшипниковые узлы, размещенные в статоре (рис.4.3).

Конструктивно двигатель образован следующими сборочными единицами: магнитная система (в корпусе которой также закреплены щеткодержатели со щетками), якорь, подшипниковые щиты с якорными подшипниками, моторно-осевые подшипники и др..

Магнитная система двигателя состоит из станины (остова), четырех главных и четырех добавочных полюсов.

Остов является магнитопроводом двигателя; он отлит из углеродистой стали и имеет восьмигранную или круглую форму. С торцов остова расположены расточки для подшипниковых щитов. На остове имеются два прилива (носика) для опоры ТЭД на тележку через пружинную подвеску. С противоположной стороны остов имеет расточки под моторно-осевые подшипники. В верхней части остова со стороны коллектора находится вентиляционный люк, через который подводится воздух, охлаждающий обмотки и детали двигателя.

Рис.4.2. Схема колесно-моторного блока локомотива с опорно-осевым подвешиванием ТЭД

Главный полюс состоит из стального сердечника и катушки, намотанной из шинной меди в два слоя (плашмя). Витки катушки изолированы друг от друга асбестовой электроизоляционной бумагой.

Для уменьшения нагрева главных полюсов, вызываемого воздействием вихревых токов, сердечники набирают из отдельных листов электротехнической стали. Собранные листы спрессовывают и соединяют заклепками. В отверстие листов запрессовывают стальной прямоугольный стержень, в который вворачивают болты, крепящие полюса к остову.

Добавочные полюсы обеспечивают улучшение процессов коммутации (снижение искрения) при работе коллекторно-щеточного узла ТЭД. По своим размерам они меньше главных и несколько отличаются от них по конструкции (в частности, сердечник добавочного полюса цельный, отлитый из стали).

Обмотки возбуждения добавочных полюсов включены последовательно с якорной обмоткой. Обмотки возбуждения главных полюсов соединены между собой так, чтобы полюса (северный и южный) чередовались между собой (рис.4.4). Катушки добавочных полюсов соединены гибкими проводами, а главных - шинами из медной ленты, изолированными асбестовой, резиновой и стеклянной лентами .

Рис.4.3.

Якорь электродвигателя состоит из стального сердечника и коллектора, насаженных на вал двигателя. На конец вала напрессовано малое зубчатое колесо (шестерня), передающее вращающий момент от двигателя через зубчатую передачу на колесную пару.

Сердечник якоря набран из листов электротехнической стали, толщиной 0,5 мм. По торцам сердечник удерживается на валу нажимными шайбами, которые установлены на вал с большим натягом.

На окружности сердечника якоря расположены продольные пазы, в которых размещены изолированные проводники якорной обмотки, закрепленные стеклотекстолитовыми клиньями. Клинья предотвращают перемещение проводников в пазах под действием центробежных сил, возникающих при вращении якоря. Лобовые части обмотки якоря (передние и задние) закреплены бандажами из стеклобандажной ленты. В последнее время начинают применять стеклометаллические бандажи.

Чтобы повысить электрическую и механическую прочность изоляции обмоток, якорь и полюса пропитывают в лаке ПЭ-933 (полиэфирноэпоксидном).

Рис.4.4. Схема соединения обмоток тягового электродвигателя

Для соединения проводников обмотки якоря с источником электроэнергии служит коллекторно-щеточный узел.

Коллектор состоит из медных пластин клинообразного сечения, изолированных друг от друга миканитовыми прокладками. Эти пластины набирают на коллекторной втулке, которую после формирования коллектора насаживают на вал электродвигателя. К каждой коллекторной пластине припаяны проводники якорной обмотки, укладываемые в пазы сердечника якоря по определенной схеме.

Коллектор, соединен с внешней цепью, через угольно-графитовые стержни, называемые щетками. Щетки устанавливают в специальные обоймы (щеткодержатели), кронштейны которых закрепляют на остове ТЭД через изоляторы. Для надежного контакта щеток с поверхностью коллектора служит пружинное нажимное устройство.

Вал якоря ТЭД, изготовленный из высококачественной стали, вращается в двух роликовых подшипниках, запрессованных в ступицы подшипниковых щитов. В подшипниковом щите, расположенном со стороны коллектора, устанавливают опорно-упорный подшипник, а с противоположной стороны - опорный. В полости подшипников, закрытых крышками, по специальным трубкам запрессовывают смазку.

Отличительной особенностью тяговых двигателей локомотивов является наличие моторно-осевых подшипников (МОП), которые служат опорой электродвигателя на ось колесной пары. МОП вмонтированы в специальные разъемные приливы остова двигателя и состоят из бронзовых вкладышей, смазочного устройства и крышки, закрепленной болтами. Крышка МОП служит резервуаром для смазки, которая подается к вкладышам подшипника при помощи специальных систем: циркуляционной (смазка под давлением с использованием шестеренчатого насоса) и польстерной (смазка с использованием войлочных фитилей). В зависимости от конструкции ТЭД, данные системы могут использоваться как поодиночке, так и совместно.

В заключение рассмотрим особенности системы, которая обеспечивает нормальную работу тяговых двигателей - системы охлаждения. Во время работы ТЭД обмотка якоря и другие детали нагреваются. Для их охлаждения применяют принудительную вентиляцию (рис.4.5).

Охлаждающий воздух, подаваемый специальным вентилятором по гибким рукавам-гармошкам к вентиляционному люку остова ТЭД, проходит через двигатель двумя потоками: один над коллектором, сердечником якоря и в зазорах между полюсами, другой под коллектором, через вентиляционные отверстия в сердечнике якоря. Оба потока соединяются в корпусе ТЭД со стороны, противоположной коллектору, и выходят наружу через специальные окна (люки).

Рис.4.5 Схема охлаждения тяговых электродвигателей на локомотивах

Внутри остова ТЭД поддерживается небольшое избыточное давление воздуха, препятствующее попаданию пыли, влаги, снега.

Вентиляторы охлаждения ТЭД могут иметь механический привод от дизеля или электрический от специальных электродвигателей (мотор-вентиляторы). Обычно один вентилятор охлаждает несколько тяговых двигателей, установленных на одной тележке. На некоторых тепловозах применяют централизованную систему охлаждения тяговых электрических машин и аппаратов.

5. Расчетная часть курсового проекта

Для тягового привода рабочими называют: электромеханические характеристики тягового электродвигателя: скоростную nд=f(Iд), моментную Mд=f(Iд) и характеристику к.п.д. ?д=f(Iд); электротяговые характеристики Fкд=f(Iд), V=f(Iд).

5.1 Определение параметров ТЭД на номинальном режиме

Электромеханические характеристики отражают изменение механических параметров nд и Мд на валу двигателя в зависимости от силы тока Iд. Моментную характеристику ТЭД Мд=f(Iд) рассчитывают, с учетом формулы (2.8), по выражению

Мд=См.Фд.Iд.?м, Н.м, (5.1)

где Мд - вращающий момент на валу ТЭД;

?м - механический к.п.д. двигателя, равный 0,96-0,98.

Скоростная характеристика nд=f(Iд) определяется из уравнений (2.6) и (2.7), характеризующих состояние электрической цепи ТЭД:

nд=(Uд-Iд.Rд)/(Cе.Фд)

или, принимая Iд.Rд ? 0,04.Uд,

nд=0,96.Uд/(Cе.Фд), об/мин. (5.2)

Последовательность расчета электромеханических характеристик включает в себя ряд этапов

1) Определение значений коэффициентов Се и См по формулам (2.9) и (2.10) в соответствии с исходными данными ТЭД.

2) Вычисление силы тока ТЭД на номинальном режиме работы

Iдн=Рдн/(Uдн.?дн).103, А, (5.3)

где Uдн, Рдн, ?дн - номинальные значения напряжения, мощности и к.п.д. двигателя (исходные данные ТЭД).

Величину ?дн можно принять равной 0,90-0,92 для тепловоза.

3) Расчет магнитного потока возбуждения ТЭД на номинальном режиме работы

Фдн=0,96.Uдн/(Cе.nдн), Вб, (5.4)

где nдн - номинальная частота вращения вала ТЭД, об/мин.

5.2. Расчет характеристики намагничивания ТЭД при различных режимах нагрузки и возбуждения

При расчете электромеханических характеристик любого электродвигателя используют его магнитные характеристики (кривые намагничивания), то есть зависимости магнитного потока Фд от тока возбуждения Iв и тока якоря Iд. Их обычно представляют в виде графиков Фд=f(Iв), построенных для различных величин тока якоря Iд, и называют нагрузочными характеристиками.

Для локомотивных ТЭД с последовательным возбуждением семейство нагрузочных характеристик Фд=f(Iв,Iд) можно заменить одной кривой Фд=f(Iв), считая Iд=Iв [10]. Однако для определения этой зависимости, которую будем называть универсальной магнитной характеристикой ТЭД, необходимо провести расчеты его магнитной системы и взаимодействия магнитных полей полюсов и якоря. Учитывая, что эти вопросы подробно изучают в дисциплине "Электрические машины", в данной курсовой работе предлагается использовать безразмерные универсальные магнитные характеристики ТЭД.

Они представляют собой зависимости магнитного потока Фд от тока возбуждения Iв, выраженные относительно значений Фдн и Iвн на номинальном режиме работы ТЭД (табл. 5.1). Определение искомой зависимости Фд=f(Iв) (в абсолютных величинах) осуществляют по точкам безразмерной характеристики путем пересчета по формулам

Фд=(Фд/Фдн).Фдн, Вб; (5.5)

Iв=(Iв/Iвн).Iвн, А, (5.6)

считая, что Iвн=Iдн.

Полученные координаты точек универсальной магнитной характеристики ТЭД необходимо занести в таблицу 5.2 и далее построить график Фд=f(Iв) на миллиметровой бумаге (рис. 1).

Таблица 5.1.

Безразмерные универсальные магнитные характеристики
электровозных и тепловозных тяговых электродвигателей

(Iв/Iвн)=(Iд/Iдн)

0,25

0,50

0,75

1,00

1,25

1,50

(Фд/Фдн)

ТЭД электровоза

0,50

0,72

0,88

1,00

1,07

1,11

ТЭД тепловоза

0,52

0,77

0,92

1,03

1,06

Таблица 5.2

0,04

0,06

0,07

0,076

0,078

0,08

185,2

370,35

555,53

740,7

925,88

1111

5) Расчет и построение зависимостей магнитного потока Фд от тока якоря Iд ТЭД при разных ступенях ослабления возбуждения.

При выполнении данного этапа следует заполнить таблицу 5.3. Значения Iд целесообразно задать по точкам универсальной магнитной характеристики в диапазоне (0,251,50).Iдн для электровозов и (0,501,50).Iдн для тепловозов. Величины тока возбуждения Iв, соответствующие каждому значению тока Iд, составляют

Iв=?.Iд, А, (5.7)

где ? - коэффициент ослабления возбуждения ТЭД.

В данной курсовой работе значения коэффициента ? на первой (ОП1) и второй (ОП2) ступенях ослабления возбуждения следует принять равными ?2=0,30,4 и ?1= . Принимаем ,

Значения магнитного потока Фд для каждого сочетания величин тока якоря Iд и коэффициента ? можно приближенно определить по построенному ранее графику универсальной магнитной характеристики ТЭД Фд=f(Iв) (рис. 1).

Полученные точки с координатами (Iд,Фд) необходимо нанести на миллиметровую бумагу и построить кривые намагничивания двигателя Фд=f(Iд) для режимов возбуждения ПП, ОП1 и ОП2 (рис.2).

Таблица 5.3.

Кривые намагничивания ТЭД при разных режимах возбуждения

Iд A

185,2

370,4

555,5

740,7

925,9

1111

ПП

?=1,00

Iв, A

185,2

370,4

555,5

740,7

925,9

1111

Фд, Вб

0,04

0,06

0,07

0,076

0,078

0,08

ОП1 ?2=0,54

Iв, A

100

200

300

400

500

600

Фд, Вб

0,026

0,042

0,052

0,062

0,067

0,071

ОП2

?2=0,3

Iв, A

55,6

111,1

166,7

222,2

277,8

333,3

Фд, Вб

0,02

0,027

0,036

0,043

0,048

0,055

5.3.Расчет и построение внешней характеристики тягового генератора тепловоза

Для расчета электромеханических характеристик ТЭД, работающего на тепловозе, дополнительно необходимо построить внешнюю характеристику тягового генератора Uг=f(Iг). Взаимосвязь токов и напряжений ТЭД и ТГ в данной курсовой работе можно считать следующей:

Uг=Uд; (5.8)

Iг=m.Iд, (5.9)

где m - количество тяговых двигателей на тепловозе, равное числу его движущих осей nос (см. исходные данные).

Порядок построения внешней характеристики ТГ

а) рассчитать мощность ТГ в продолжительном (номинальном) режиме

Ргн = m.Рдн.103 = Uгн.Iгн, Вт, (5.10)

где Uгн, Iгн - напряжение и ток ТГ на номинальном режиме;

б) определить максимальное напряжение ТГ

Uгmax=Uгн.kг, В (5.11)

и соответствующий ему минимальный ток ТГ

Iгmin=Pгн/Uгmax, А, (5.12)

где kг - коэффициент регулирования напряжения ТГ.

Значение kг выбирают из диапазона 1,41,8 так, чтобы величина напряжения Uгmax не превышала 800 В;

в) определить максимальную силу тока ТГ

Iгmax=(1,251,45).Iгн, А (5.13)

и соответствующее ей минимальное напряжение ТГ

Uгmin=Pгн/Iгmax, В; (5.14)

г) рассчитать гиперболический участок внешней характеристики ТГ.

Для этого необходимо выбрать 5-7 значений тока ТГ в диапазоне Iгmin ? Iг ? Iгmax и определить соответствующие им величины напряжения ТГ как Uг=Pгн/Iг, В. Результаты следует занести в две верхние строки таблицы 5.4.

В крайние колонки таблицы необходимо внести координаты точек, которые ограничивают гиперболический участок, то есть (Iгmin, Uгmax) и (Iгmax, Uгmin).

д) построить координатную сетку с осями I, U и в ней нанести точки с координатами (Iгmin,Uгmax), (Iгн,Uгн) и (Iгmax,Uгmin).

Через точку с координатами (Iгmin,Uгmax) провести горизонтальную линию, соответствующую ограничению по напряжению ТГ.

Через точку с координатами (Iгmax,Uгmin) провести вертикальную линию, соответствующую ограничению по току ТГ.

Гиперболический участок внешней характеристики можно построить по данным верхней части таблицы 5.4. Полученная кривая обязательно должна пройти через точку продолжительного режима работы ТГ с координатами (Iгн,Uгн) (рис. 3).

8) Построенные внешняя характеристика ТГ Uг=f(Iг) и кривые намагничивания ТЭД Фд=f(Iд) позволяют рассчитать электромеханические характеристики ТЭД тепловоза по формулам (5.1), (5.2) с использованием соотношений (5.8) и (5.9).

Результаты вычислений следует оформить в виде таблицы 5.4, две верхние строки которой содержат точки гиперболического участка внешней характеристики ТГ.

По данным таблицы 5.4 можно построить искомые графики скоростной nд=f(Iд) (рис.4) и моментной Mд=f(Iд) (рис.5) характеристик ТЭД для различных режимов возбуждения.

Таблица 5.4

IГ,А

2778

3000

3500

4000

4500

5000

5778

UГ,В

768

711

609

533

474

426

369

Iд,А

463

500

583

666

750

833

963

ПП

Фд,Вб

0,066

0,067

0,07

0,073

0,075

0,077

0,08

Мд,Нм

2310

2533

3085

3676

4253

4849

5824

nд,об/мин

1059

966

791

664

575

503

420

ОП1

Фд,Вб

0,047

0,05

0,054

0,057

0,061

0,064

0,067

Мд,Нм

1645

1890

2380

2870

3459

4030

4878

nд,об/мин

1487

1294

1027

851

707

606

501

ОП2

Фд,Вб

0,033

0,035

0,037

0,04

0,043

0,046

0,05

Мд,Нм

1155

1323

1630

2013

2438

2897

3640

nд,об/мин

2118

1848

1498

1213

1018

843

672

5.3. Расчет и построение электромеханических и электрических тяговых характеристик ТЭД с учетом параметров КМБ

Электротяговые характеристики Fкд=f(Iд) и V=f(Iд) отражают изменение механических параметров на ободе колеса. Поэтому они также называются электромеханическими характеристиками ТЭД, отнесенными к ободу колеса локомотива.

Зависимость силы тяги Fкд на ободе колеса, развиваемой двигателем, от тока якоря Iд можно рассчитать по известной моментной характеристике Mд=f(Iд) и параметрам колесно-моторного блока. При этом взаимная связь величин Fкд и Мд определяется соотношением

Fкд=2.Мд.?.?з/Dк, Н, (5.15)

где Dк - диаметр колеса локомотива по кругу катания, м;

? - передаточное число зубчатой передачи колесно-моторного блока;

?з - к.п.д. зубчатой передачи, равный 0,975.

Значения параметров ? и Dк принимаются в соответствии с заданием к курсовой работе.

Скоростная характеристика V=f(Iд), отнесенная к ободу колеса, рассчитывается по электромеханической характеристике nд=f(Iд) ТЭД с учетом того, что скорость движения локомотива принято выражать в км/ч:

V=0,188.nд.Dк/?, км/ч. (5.16)

Результаты расчетов следует занести в таблицу 5.5.

Полученные электромеханические характеристики ТЭД, отнесенные к ободу колеса, необходимы для построения тяговых характеристик локомотивов.

Табл. 5.5 Электротяговые характеристики тягового привода локомотива

Iд, A

463

500

583

666

750

833

963

ПП

?=1,00

Fкд, кН

18,5

20,3

24,7

29,4

34

38,8

46,6

V, км/ч

48,5

44,2

36,2

30,4

26,3

23

19,2

ОП1

?1=0,54

Fкд, кН

13,2

15,1

19

23

27,7

32,2

39

V, км/ч

68,1

59,3

47

39

32,4

27,8

23

ОП2

?2=0,3

Fкд, кН

9,24

10,6

13

16,1

19,5

23,2

29,1

V, км/ч

97

84,6

68,6

55,6

49,4

38,6

30,8

5.4. Расчет и построение тяговой и токовой характеристик с учетом ограничений

для обеспечения устойчивости локомотивов против боксования устанавливают так называемый расчетный коэффициент сцепления ?к, величина которого меньше потенциального ?о. При этом сила тяги по сцеплению составляет

Fксц= ?к.Pсц, кН. (5.17)

Расчетный (нормативный) коэффициент сцепления локомотива ?к определяют экспериментальным путем и задают так, чтобы обеспечить практически приемлемую надежность движения полновесных поездов (поездов расчетной массы) по тяжелым подъемам при плохих условиях сцепления.

В данной курсовой работе характеристики сцепления ?к=f(V) можно считать следующими:

для электровозов постоянного тока

?к=0,28+3/(50+20.V)-0,0007.V; (5.18)

- для магистральных тепловозов

?к=0,118+5/(V+27,5). (5.19)

Для построения тяговых характеристик локомотивов предварительно необходимо рассчитать силу тяги по сцеплению Fксц при различной скорости движения локомотива. Полученные значения внести в таблицу 5.6.

Таблица 5.6.

Сила тяги локомотива по сцеплению

V, км/ч

0

10

20

30

40

50

60

70

80

0,3

0,251

0,223

0,204

0,192

0,183

0,175

0,168

0,165

Fксц, кН

406,4

339,8

301,9

276,1

260

247,1

237,1

228,8

223,4

5.6 Построение тяговых и токовых характеристик локомотивов

Тяговой характеристикой локомотива называют графическую зависимость касательной силы тяги Fк от скорости движения V при установившихся режимах на разных позициях регулирования (позициях контроллера машиниста).

Токовая характеристика представляет графическую зависимость тока электровоза Iэ или тока тягового генератора (ТГ) тепловоза Iг от скорости V при установившихся режимах на разных позициях контроллера машиниста.

На стадии проектирования локомотивов указанные зависимости Fк=f(V) и I=f(V) можно построить по электротяговым характеристикам. Для этого необходимо пересчитать данные таблицы 5.5, а именно:

а) определить значения тока локомотива по величинам тока ТЭД:

- ток тягового генератора тепловоза Iг - по формуле (5.9);

б) определить значения касательной силы тяги локомотива Fк по величинам силы тяги ТЭД Fкд

Полученные результаты занести в таблицу 5.7.

Таблица 5.7.

Табл 5.7 Рабочие характеристики локомотива

Iг, A

2778

3000

3500

4000

4500

5000

5777

ПП
?=1,00

Fк, кН

111

121,8

148,2

176,4

204

232,8

279,6

V, км/ч

48,5

44,2

36,2

30,4

26,3

23

19,2

ОП1
?1=0,54

Fк, кН

79,2

90,6

114

138

166,2

193,2

234

V, км/ч

68,1

59,3

47

39

32,4

27,8

23

ОП2
?2=0,3

Fк, кН

55,4

63,6

78

96,6

117

139,2

174,6

V, км/ч

97

84,6

68,6

57,6

46,4

38,6

30,8

Порядок построения рабочих характеристик тепловоза заключается в следующем :

1) В координатах V,Iг построить линии ограничений максимального Iгmax и минимального Iгmin тока ТГ.

2) Рассчитать значения силы тока ТГ, соответствующие автоматическим переходам ТЭД с одного режима возбуждения на другой :

- ток переходов ППОП1 IГП-1(Iгmin+Iгн+160)/2, A; (5.23)

- ток переходов ОП1ОП2 IГ1-2(Iгmin+Iгн-20)/2, A. (5.24)

Используя значения IГП-1 и IГ1-2, построить горизонтальные линии переходов ППОП1 и ОП1ОП2.

3) По данным таблицы 5.7 построить график Iг=f(V) (рис.6) и определить скорости тепловоза Vп-1 и V1-2, соответствующие переходам ППОП1 и ОП1ОП2.

4) Используя данные таблицы 5.7 и токовую характеристику Iг=f(V),

построить тяговую характеристику тепловоза Fk=f(V); показать ограничения силы тяги по максимальному току ТГ Fkдоп и по сцеплению (таблица 5.6), а также ограничение конструкционной скорости тепловоза Vк.

5) По графику Iг=f(V) определить скорость продолжительного режима тепловоза Vдл, соответствующую номинальной силе тока ТГ Iгн, а по значению Vдл- длительную силу тяги тепловоза.

Полученные значения основных технических параметров локомотива следует внести в таблицу 5.8.

Основные технические параметры локомотива (тепловоз)

Режим работы

Параметры

Ограничения

сила тяги, кН

скорость, км/ч

1) Продолжительный

Fкдл=200

Vдл=26

------

2) Расчетный

Fкр=309

Vр=17

По сцеп.

3) Трогание с места

Fктр=406

-------

По току

Расчетным режимом работы локомотива называют режим, характеризуемый величинами расчетной силы тяги Fкр и расчетной скорости Vр. По этим параметрам определяют так называемые расчетные нормы массы составов на участках железных дорог.

Расчетный режим тепловозов принято устанавливать по параметрам продолжительного режима работы тяговых электромашин. Если в результате проектирования тепловоза оказалось, что величина Fкдл превышает силу тяги по сцеплению Fксц при скорости Vдл, то значение расчетной силы тяги Fкр и расчетной скорости Vр принимают по точке "порога" тяговой характеристики.

Помимо расчетной силы тяги, другим важным параметром локомотива является сила тяги при трогании с места Fктр. Ее величина может быть ограничена по сцеплению либо по максимальному току локомотива. Первый случай характерен для грузовых и маневровых локомотивах, а второй - для пассажирских.

Значения параметров расчетного режима и трогания, как одни из важнейших характеристик локомотивов, нормируются ПТР .

6. Электроподвижной состав.

6.1 Электровоз постоянного тока ВЛ10

Электровоз ВЛ10 предназначен для работы с грузовыми поездами на магистральных железных дорогах РФ, электрифицированных на постоянном токе с напряжением в контактной сети 3000 В.

Все оборудование электровозов рассчитано на надежную работу при напряжении в контактной сети от 2200 до 4000 В. Изменение температуры окружающего воздуха вне кузова допускается от --50 до +40 °С при влажности воздуха 90%, замеренной при температуре +27 °С. Высота над уровнем моря не более 1200 м. Электровоз ВЛ 10 и состоит из двух сочлененных между собой автосцепкой СА-3 секций. На электровозах ВЛ10 выпуска до 1975 г. каждая секция опиралась на две двухосные несочлененные тележки через упругие опоры. На электровозах ВЛ10 выпуска с 1975 г. секции кузова на тележках опираются с помощью люлечного подвешивания, которое в значительной, степени улучшает горизонтальную динамику электровоза.

Сварные рамы тележек обладают повышенной надежностью, в процессе изготовления их подвергают тщательному контролю с применением современной аппаратуры. Тележки оборудованы бесчелюстными буксами с роликовыми подшипниками повышенной долговечности, Перемещение букс относительно рамы происходит за счет деформации сдвига резинометаллических блоков. Рессорное подвешивание обеспечивает эффективное смягчение вертикальных толчков при прохождении электровозом неровностей пути.

На электровозах ВЛ10 установлено по восемь тяговых двигателей. Тяговые электродвигатели имеют последовательное возбуждение, опорно-осевое подвешивание, принудительную вентиляцию и мощность при часовом режиме по 670 кВт. Электродвигатели обладают надежностью и высоким к. п. д. Вращающий момент от тягового двигателя на колесные пары передается двусторонней одноступенчатой цилиндрической косозубой передачей.

Для регулирования частоты вращения тяговых двигателей предусмотрены три вида их соединения: последовательное (С), последовательно-параллельное (СП) и параллельное (П). Кроме того, на всех этих соединениях предусмотрена работа тяговых электродвигателей при ослабленном возбуждении с коэффициентом возбуждения 0,75; 0,55; 0,43; 0,36. Электрические цепи электровоза получают питание от контактного провода через токоприемники, обеспечивающие надежный токосъем при любых скоростях движения электровоза.

Схемы силовых цепей электровозов

а) электровоз постоянного тока б) электровоз переменного тока

6.2 Электровоз переменного тока ВЛ80

Электровоз ВЛ80 предназначен для эксплуатации на магистральных железных дорогах РФ, электрифицированных на однофазном токе промышленной (50 Гц) частоты с номинальным напряжением 25 к В.

Оборудование электровоза рассчитано на работу при напряжении в контактной сети от 19 до 29 кВ, изменении температуры окружающего воздуха от -- 50 до + 40 °С, влажности воздуха до 90 % при температуре 293 К (+ 20 °С) и высоте над уровнем моря не более 1200 м. Электровоз состоит из двух однотипных секций, оборудован электрическим реостатным тормозом и системой, позволяющей управлять двумя электровозами по системе многих единиц.

В состав поставки электровоза входят: комплекты инструментов, принадлежностей и запасных частей, предназначенных для использования при техническом обслуживании н текущих ремонтах;

комплект технической документации, предназначенной для использования при эксплуатации, техническом обслуживании и текущих ремонтах.

6.3 Электропоезд ЭР2

Электропоезд ЭР2 предназначен для перевозки пассажиров на пригородных участках железных дорог, электрифицированных на постоянном токе с номинальным напряжением в контактной сети 3 300 в.

За основную поездную единицу принят 10-вагонный электропоезд, состоящий из двух головных, пяти моторных и трех промежуточных прицепных вагонов. По условиям эксплуатации допускается формирование поезда из восьми, шести или четырех вагонов , а также из двенадцати.

Управление поездом осуществляется из кабины машиниста, имеющейся в каждом головном вагоне. На электропоезде ЭР2 предусмотрен реостатный пуск тяговых двигателей с переключением их в процессе пуска с последовательного на параллельное соединение, двухступенчатое ослабление поля на каждом из двух соединений шунтированием обмоток возбуждения активным и индуктивным сопротивлениями и реверсирование хода поезда, а также защита тяговых двигателей от перегрузок, коротких замыканий, боксования и перенапряжений.

Система управления двигателями--групповая, косвенная. Основным аппаратом управления является силовой контроллер с пневматическим приводом, имеющий одностороннее вращение. Этот контроллер имеет 18 позиций.

Схема силовых цепей моторного вагона

7. Вывод

В ходе выполнения курсовой работы я изучил физические процессы, происходящие в колесно-моторном блоке (КМБ) тепловоза при преобразовании электрической энергии в механическую, и создании силы тяги. На основании рассчитанных параметров тягового электродвигателя (ТЭД) построил тяговую характеристику тепловоза с нанесением на ней ограничений по конструктивным параметрам и условиям сцепления колеса с рельсом.

8. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Зорохович А.Е., Крылов С.С. Основы электротехники для локомотивных бригад: Учебник для техн.школ. - М.:Транспорт,1987.-414 с.

2. Дробинский В.А., Егунов П.М. Как устроен и работает тепловоз. - М.:Транспорт,1980. - 367 с.

3. Сидоров Н.И. Как устроен и работает электровоз. - М.: Транспорт,1980. - 223 с.

4. Луков Н.М., Стрекопытов В.В., Рудая К.И. Передачи мощности тепловозов: Учебник для вузов ж.-д. трансп. / Под ред. Н.М.Лукова - М.:Транспорт,1987. - 279 с.

5. Тепловозы: Основы теории и конструкция: Учеб. для техникумов / В.Д.Кузьмич, И.П.Бородулин, Э.А.Пахомов и др.; Под ред. В.Д.Кузьмича.- М.:Транспорт,1991.-352 с.

6. Электрические железные дороги: Учебник для вузов ж.-д. трансп. / В.А.Кисляков, А.В.Плакс, В.Н.Пупынин и др.; Под ред. А.В.Плакса и В.Н.Пупынина. - М.:Транспорт,1993. - 280 с.

7. Бирюков И.В., Беляев А.И., Рыбников Е.К. Тяговые передачи электроподвижного состава железных дорог.-М.:Транспорт,1986. - 256 с.

8. Бородин А.П. Электрическое оборудование тепловозов: Учебник для средних ПТУ. - М.:Транспорт,1988. - 287 с.

9. Вилькевич Б.И. Автоматическое управление электрической передачей и электрические схемы тепловозов. - М.:Транспорт,1987. - 272 с.

10. Теория электрической тяги / В.Е.Розенфельд, И.П.Исаев, Н.Н.Сидоров, М.И.Озеров; Под ред. И.П.Исаева. - М.: Транспорт,1995.-294 с.

11. Подвижной состав и тяга поездов: Учебник / Третьяков А.П., Деев В.В., Перова А.А. и др.; Под ред. В.В.Деева, Н.А.Фуфрянского. - М.:Транспорт,1979. - 368 с.

12. Режимы работы магистральных электровозов / О.А.Некрасов, А.Л.Лисицын, Л.А.Мугинштейн, В.И.Рахманинов; Под ред. О.А.Некрасова. - М.:Транспорт,1983. - 231 с.

13. Правила тяговых расчетов для поездной работы. - M.:Транспорт, 1985. - 287 с.

Страницы: 1, 2


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ