Рефераты

Химический состав молока - (курсовая)

p>Вторым фактором устойчивости жировой эмульсии является создание на границе раздела фаз структурно-механического барьера за счет того, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, которые препятствуют слиянию шариков. Этот фактор наиболее сильный фактор стабилизации концентрированных эмульсий, например, высокожирные сливки. Следовательно, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этой цели надо сократить до минимума механические воздействия на дисперсную фазу молока при транспортивке, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, т. к. длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности. А также для стабилизации жировой эмульсии необходимо широко применять дополнительное диспергирование жира путем гомогенизации.

При выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и коалесценцию шариков жира, то при получении масла наоборот стоит задача разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.

Коалесценция —это когда слои дисперсионной среды или адсорбционные слои и частицы сливаются в новые более крупные образования, причем это приводит к заметному разделению фаз.

Агрегация диспергированных частиц с образованием более крупных частиц, которые под действием силы тяжести выпадают в осадок, приводит к флокуляции или коагуляции.

Схема строения двойного электрического слоя вокруг коллоидной частицы

    1 — коллоидная частица.
    2 — двойной электрический слой.
    3 — его адсорбционная часть.
    4 — диффузная часть.
    3. Меры предупреждения жиров от порчи.

Характеристика природных и синтетических антиокислителей. Механизм их воздействия

Предохранение жиров от порчи имеет важное биологическое и экономическое значение. В первую очередь необходимо по возможности исключить соприкосновение жира с О2 воздухе, светом, теплом. Сохранение жиров в герметической таре значительно удлиняет индукционный период. например, рекомендуется пищевые жиры сохранять в вакууме, в атмосфере инертного газа при минусовой температуре. В жирах не должно быть примесей, катализирующих металлов и бактерий. Для предупреждения окислительного разрушения жиров к ним добавляют антиокислители. Этот процесс называется стабилизацией жиров. Сущность действия окислителей заключается в том, что они более активно вступают в реакцию со свободными радикалами и тем самым обрывают цепную реакцию, приводящую к порче жиров. По характеру участия в ингибировании цепной реакции различают два типа антиокислителей: одни препятствуют образованию свободных радикалов, другие способствуют разрушению уже образовавшихся гидроперекисей. Существует также группа веществ, которые не обладая прямым антиокислительным действием, усиливают действия антиокислителей, т. е. являются ихсинергистами.

К антиокислителям и их синергистам предъявляют следующие требования: 1) не должны обладать вредными для организма человека свойствами; 2) не должны изменять органолептических качеств жира;

3) должны предохранять жир от окисления в течение длительного времени. Следует иметь в виду, что простое добавление антиоксидантов в жиры не всегда предупреждает их от окисления. Антиоксиданты эффективны только тогда, когда их применяют с соблюдением следующих требований:

1) жиры, подвергаемые стабилизации, должны быть свежими, без признаков прогоркания;

2) не следует смешивать жиры, имеющих признаки прогоркания, со свежими жирами, в состав которых они входят, поскольку это приводит к ускорению окисления. Повышенное содержание воды, температуры, свободный доступ кислорода, света снижают эффективность антиоксидантов.

Природные антиокислители — фосфолипиды, топоферолы, каратиноиды. Синтетические — бутилокситолуол —белый или бледно желтый кристаллический порошок без запаха, не растворим в воде, но хорошо растворяется в жирах и растворителях жиров. Бутилоксианизол —воскообразные кристаллы кремневого или розового цвета с феноловым запахом. Растворим в жирах, этаноле, эфире, бензоле. Устойчив к действию температур, поэтому его можно вносить в продукты, подвергающиеся тепловой обработке. Эти два антиокислителя по составу и свойствам близки между собой, и поэтому совместное их применение усиливает стабилизирующее действие. Стабилизаторы—лейцин, аргинин, цистеин увеличивают сохраняемость молочного жира. В литературе имеются сообщения об антиокислительном эффекте элеутерокка кислого. К синергистам относятся: фосфорная, фосфолипиды аминокислоты, аскорбиновая, лимонная кислоты.

Работы, связанные с изучением, применением и разработкой антиоксидантов, носят огромное народно-хозяйственное значение, т. к. это удлиняет сроки хранения, сохраняет качество жиров.

    4. Химические свойства молока
    1). Влияние химического состава молока на его свойства.
    2). Кислотность молока.
    3). Буферная емкость молока.
    3). Окислительно-восстановительный потенциал.
    4). Значение рН в молочной промышленности.

Свойства молока. Свежее натуральное молоко, полученное от здоровых животных, характеризуется определенный физико-химическими и органолептическими свойствами, которые могут резко различаться в начале и конце лактационного периода, под влиянием болезней животных, некоторых видов кормов, при хранении молока в неохлажденном виде и при его фальсификации. Поэтому по физико-химическим и органолептическим свойствам молока можно оценить натуральность и качество заготовляемого сырья, т. е. его пригодность к промышленной переработке.

Все компоненты молока по разному влияют на физико-химические свойства его. Например, от массовой доли белка, дисперсности и гидратационных свойств белков в большей степени зависит вязкость и поверхностное натяжение молока, но почти не зависят величины электропроводности и осмотического давления. Почти все компоненты молока влияют на его плотность и кислотность, минеральные вещества молока значительно влияют на его кислотность, электропроводность, осмотическое давление и температуру замерзания, но не влияют на вязкость и т. д. Кислотность — титруемая (общая) и активная.

Общая (титруемая) кислотность —выражается в градусах Тернера и определяется титрованием 0, 1 н раствором щелочи 100 мл молока в присутствии индикатора фенолфталеина до нейтральной реакции. Кислотность является критерием оценки качества заготовляемого молока по ГОСТ 13264-88 «Молоко коровье» требования при закупках.

Кислотность свежевыдоенного молока составляет 16-18оТ. Она обусловливается кислыми солями — дегидрофасфатами и дегидроцитратами (около 9-13оТ), белками — казеином и сывороточными белками (4-6оТ), углекислотой, кислотами (молочной, лимонной, аскорбиновой, свободными жирными и др. компонентами молока (1-3оТ).

При хранении сырого молока титруемая кислотность повышается по мере развития в нем микроорганизмов, которые сбраживают молочный сахар с образованием молочной кислоты. Повышение кислотности вызывает нежелательные изменения свойств молока, например, снижение устойчивости белков к нагреванию. Поэтому молоко с кислотностью 21оТ принимают как несортовое, а молоко с кислотностью выше 22оТ не подлежит сдаче на молочные заводы. Кислотность молока зависит от породы животных, от кормовых рационов, возраста, физиологического состояния и т. д. Особенно сильно изменяется кислотность в течение лактационного периода и при заболеваниях животных.

В первые дни после отела кислотность повышена за счет большого содержания белков, солей, через 40-60 дней она достигает физиологической нормы. И перед концом лактации коров имеет пониженную кислотность.

Отклонение естественной кислотности молока от физиологической нормы оказывает влияние на технологические свойства молока. Так, молоко с пониженной кислотностью нецелесообразно перерабатывать в сыры, т. к. оно медленно свертывается сычужным ферментом, а образующийся сгусток плохо обрабатывается. рН (активная кислотность) —это концентрация водородных ионов. Она выражается отрицательными логарифмом концентрации ионов водорода, обозначается рН. Чем выше концентрация ионов Н2, тем ниже значение рН. Для нормального свежего молока рН составляет 6, 47—6, 67. Такая кислотность благоприятна для устойчивости коллоидной системы молока и развития бактерий. При повышенной активности кислотности развитие микроорганизма замедляется, а при значительность снижении рН прекращается. Активная кислотность изменяется медленно, чем титруемая, что объясняется буферными свойствами молока. Молоко содержит несколько буферов (белковый, фосфатный, цитратный). Они обеспечивают постоянство рН. Белковый буфер состоит из белков молока (казеина) и натриевой или калиевых солей, которые могут вступать в реакции как с кислотами, так и со щелочами, таким образом нейтрализуя их. В случае добавления или накопления в молоке кислоты ионы Н2 кислоты связываются солью казеина. При этом образуется свободный белок, обладающий свойствами слабой кислоты. NH3 NH3

    R + HCl R + NCl COONa COOH

диссоциация СООН —слабая, РН молока изменяется незначительно, а титруемая кислотность повышается. Также ведет себя фосфатный буфер

    Na2HPO4+HCl=NaH2PO4+NaCl

Если бы в молоке не было буферных систем, вряд ли мы смогли бы вырабатывать кисломолочные продукты и сыры. Дело в том, что молочнокислые закваски могут лишь развиваться при определенном рН. Низкие величины рН действуют на них губительно. Следовательно молочная кислота, образующаяся при сбраживании молочного сахара должна каким-то образом нейтрализоваться. И здесь на помощь приходят буферные системы. Но они действуют до тех пор, пока не утратят буферных свойств своих. Изменение рН молока при добавлении к нему кислоты или щелочи произойдет в том случае, если будет превышена буферная емкость систем молока. Под буферной емкостью молока понимают количество кислоты или щелочи, которое необходимо добавить к 100 мм молока, чтобы изменить величину рН на единицу.

Вследствие буферных свойств молока рН кефира, выработанного термостатным способом в конце сквашивания при титруемой кислотности 75-80осоставляет лишь 4, 85-4, 75, а рН сгустка в процессе производства творога жирного при кислотности 58-60оТ —%. 15-5, 05. При таком рН возможны развитие молочнокислых стрептококков и накопление ароматических веществ. Аналогично при выработке твердых сыров рН сырной массы после прессования при высокой титруемой кислотности. Имеем величину, равную 5, 2-5, 6, что объясняется большим содержанием в ней белков, буферная способность которых при протеолизе увеличивается.

    Окислительно-восстановительный потенциал

Е является количественной мерой окисляющей или восстанавливающей способности молока. Е. нормального свежего молока равен 0, 25—0, 3 В (250—350 мВ). Молоко содержит ряд химических соединений, способных отдавать или присоединять электроны (атомы Н2): аскорбиновую кислоту (токоферолы), цистеин, рибофлавин, молочную кислоту, коферменты окислительно-восстановительных ферментов (дегидрогиназ, оксидаз) О2, металлы и пр. окислительно-восстановительные условия в молоке зависят от концентрации ионов Н2 и поэтому их выражают условным показателем. rH2, который вычисляют по уравнению rH2 = Е/0, 03 + 2 pH (при 20оС). Если в свежем молоке Е=0, 3 В, а рН=6, 6, то rH2=23, 2. Значит свежее молоко — это среда со слабыми восстановительными свойствами. В нейтральной среде rH2=»28. Если rH2>28, то среда обладает окислительной способностью, ниже 28 — восстановительной способностью. Усиление восстановительных свойств молока, т. е. падение окислительно-восстановительного потенциала и rH2вызывают тепловая обработка, развитие микроорганизмов и т. д. Так, молочнокислые бактерии при развитии в молоке понижают величину Е до -60ё 120 мВ, а в твердых сырах до -150 ё170 мВ и ниже. Развитие в сыром молоке многочисленных микроорганизмов вызывает резкое снижение окислительно-восстановительный потенциал на изменение величины которого основана редуктазная проба. При определенном значении Е индикаторы (мителеновый голубой или резазурин), внесенные в молоко, восстанавливаются, обесцвечиваясь или изменяя окраску. Чем больше бактерий содержится в сыром молоке, тем быстрее падает окислительно-восстановительный потенциал и восстанавливаются добавленные реактивы.

Повышению окислительно-восстановительного потенциала, т. е. усилению окислительных свойств молока, способствуют металлы (Сu, Fe) и аэрация (перемешивание). От величины окислительно-восстановительного потенциала зависят интенсивность протекания в молочных продуктах (сыры, кисло-молочные продукты) биохимических процессов, (протеолиз, распад АК, лактозы, липидов) и накопление ароматических веществ (диацетила).

Возникновение пороков в молоке и молочных продуктах таких пороков вкуса, как окисленный, металлический и салистый привкусы, обусловлены повышением окислительно-восстановительного потенциала среды.

    Значение рН в молочной промышленности
    От величины рН зависят многие производственные показатели:

—коллоидное состояние белков молока и сл-но стабильность полидисперсной системы молока;

—условия роста полезной и вредной микрофлоры с ее влиянием на процессы созревания;

—скорость образования типичных компонентов вкуса и аромата отдельных молочных продуктов;

—состояние равновесия между ионизированным и коллоидно распределенным фосфатом кальция и обусловленное этим термоустойчивость белковых веществ; — активность нативных и бактериальных ферментов;

—очищающе-дезинфицирующая способность различных моющих и дезинфицирующих средств;

—коррозийное действие золей и моющих растворов, а также степень загрязненности сточных вод молочных предприятий.

РН для сырого молока —показатель качества, а для молочных продуктов являются показателем качества и фактором управления производственным процессом.

рН — как показатель качества. Установлен достаточно четко, тем не менее применение рН в качестве показателя качества еще не в полной мере предусмотрено национальными стандартами отдельных стран. В мировом масштабе наблюдается тенденция к включению рН молочных продуктов, главным образом сычужных сыров, в оценку их качества. Молочные продукты удовлетворительного качества характеризуются определенным значением рН, например, цельное молоко— 6, 6 — 6, 8; сгущенное — 6, 1 — 6, 4; йогурты — 4, 0 — 4, 3; творожная сыворотка — 4, 3 — 4, 6 и т. д. По величине рН можно судить о способности молока к свертыванию: маститное молоко — > 6, 8;

    нормальное свежее — 6, 6 — 6, 8;
    начинающее скисать — 6, 3;
    свертывание при нагревании — 5, 7;
    свертывание с образованием сгустка — 5, 3 — 5. 5.

Величина рН меняется при внезапных колебаниях температуры, причем перепад температуры вызывает отклонение рН в кислую зону. Внезапное повышение температуры ведет к отклонению рН в щелочную зону.

    рН — как фактор управления производственным процессом.

При различных технологических процессах рекомендуется следить за изменением величины рН, т. к. от этого зависят качество и выход готового продукта. Например, при регулировании созревания сливок при производстве кислосливочного масла требуемая величина рН должна лежать в пределах 4, 7— 4, 95. Если она сокращена, то продукт переквашен, появляется порок —кислый металлический привкус, если превышено рН, то образуется недостаточное количество диацетила— порок пустой, творожный вкус; или сычужное свертывание проводят при рН 6, 1 — 6, 4; в свежем сыре 4, 7 — 5, 3; зрелый сыр — 5, 2 — 57; сокращении или превышения вызывает пороки консистенции и т. д. Активность водородных ионов существенно влияет на жизненные функции микрофлоры. Оптимум роста микроорганизмов лежит в узком диапазоне рН, и его надо поддерживать на заданном уровне, особенно при подготовке необходимых питательных сред для микробиологического контроля качества и в целях создания наиболее благоприятных условий для роста микроорганизмов в системе биологического самоочищения сточных вод молочных предприятий. Определение величины рН необходимо не только в целях поддержания оптимальной среды для роста м. о. , но и для предотвращения микробиологических пороков качества. так удалось доказать, что развитие колоний черной плесени в сыре «Том Вандуз» происходит только при значении рН>5, 5.

Диапазон активности водородных ионов, который для микроорганизмов при биологическом самоочищении считается не опасным, лежит в пределах рН от 6, 0 до 8, 5. Более высокие и низкие значения рН могут привести к нарушениям в процессе биологического распада, особенно в том случае, если в отстойнике происходит быстрая смена сильно кислых и сильно щелочных сточных вод. Так как сточные воды с рН
    6. Теплофизические и оптические свойства молока
    1). Удельная теплоемкость.
    2). Коэффициент теплопроводности и температуропроводности.
    3). Показатель преломления.
    Теплофизические свойства молока

Для расчетов затрат теплоты или холода на нагревание или охлаждение молока и молочных продуктов необходимо знать их теплофизические свойства. Наиболее важными из них являются удельная теплоемкость, коэффициенты теплопроводности и температуропроводности, которые связаны между собой соотношением а=l(ср), где а — коэффициент температуропроводности м2/с, l — коэффициент теплопроводности, ВТ/(мЧк), С — удельная теплоемкость, ДЖ/(кгЧк) ; р — плотность продукта; кг/м3 Теплофизические свойства молока и молочных продуктов зависят от температуры, содержания сухих веществ (главным образом от количества и дисперсности), воды и т. д.

Удельная теплоемкость цельного молока в интервале температур 273—333 К (0—60оС) изменяется незначительно, она является постоянной и равна 3900 ДЖ(кгЧк) или 3, 9 КДЖ/(кгЧк). Удельная теплоемкость сливок уменьшается с увеличением жирности. Удельная теплопроводность молочных продуктов

    Наименование
    С, ДЖ(кгЧк)
    l. ВТ(м. к)
    аЧ108Чм2С
    Молоко
    сухое цельное пленочной сушки
    2093
    0, 16
    13, 1
    распылительной сушки
    1926
    0, 19
    15
    сухое обезжиренное
    1717
    0, 12
    12, 5
    Масло,
    полученное методом сбивания
    5129
    0, 2
    4, 7
    полученное методом преобразования высокожирных сливок
    5200
    0, 2
    4, 3
    Творог жирный
    3266
    0, 43
    12, 4
    Сыр
    2428
    0, 35
    13, 3
    Пахта
    3936
    0, 45
    11, 4
    Сыворотка молочная (0, 25% жира)
    4082
    0, 54
    12, 8

Коэффициент теплопроводности молока l при 20оС равен »0, 5 Вт (м. к). Она увеличивается с повышением температуры и ее можно рассчитать по формуле

    l = 0, 22+0, 0011Т

Теплопроводность сливок увеличивается с повышением температуры и уменьшается с увеличением содержания жира. При температуре 273оК. l. сливок как функцию жирности (в интервале от 20 до 45%) рассчитывают по формулеl= 0, 36-0, 0014Ж

Коэффициент температуропроводности. Он зависит от температуры, жирности, влажности, плотности и пористости пищевых продуктов. Коэффициент температуры молока при 20оС равен 13Ч10-8м2/с. Его значение увеличивается с повышением температуры молока, что объясняется возрастанием при этом величины теплопроводности и уменьшением объемной теплоемкости, с которыми он связан зависимостью.

    а = l (ср)

В интервале температур 273-353 К а (в м2с) молока как и функцию температуры рассчитывают по формуле: аЧ108=4, 1+0, 0325Т

Коэффициент температуропроводности сливок уменьшается с увеличением жирности и возрастает с повышением температуры.

Показатель преломления —представляет собой постоянную вещества при определенной температуре и определенной длине волны и служит для идентификации чистых жидкостей. Молоко непрозрачно из-за присутствия в ней жира и белка. Жировые шарики отражают большую часть падающего света, поэтому перед проведением рефрактометрических исследований следует удалить жир из молока. Но и казеин делает нечеткой разделительную линию в рефрактометре, и тоже влияет на результаты измерения. Показатель преломления обезжиренного молока при 20оС колеблется от 1, 344 до 1, 348. Он складывается из показателей преломления воды (1, 3329) и составных частей обезжиренного остатка молока—лактозы, казеина, сывороточных белков, солей, небелковых азотистых соединений и прочих компонентов. Поэтому по величине показателя преломления молока и молочной сыворотки с помощью специальных рефрактометров можно контролировать содержание в молоке СОМО, белков, лактозы. Например, количество белков определяют по разности между показателями преломления исследуемого молока и его сыворотке после осаждения белков раствором СаСl2 при кипячении, а содержание СОМО — по разности между показателями преломления молока и дистиллированной воды. С помощью рефрактометрического метода можно осуществлять косвенный контроль натуральности молока. Показатель преломления (число рефракции) сыворотки, натурального молока является величиной относительно постоянной, равной 1, 342-1, 343. При добавлении к молоку воды число рефракции молочной сыворотки понижается пропорционально количеству добавленной воды— в среднем на 0, 2 единицы на каждый процент воды. Большее значение имеют рефрактометрические исследования для определения числа преломления молочного жира, и следовательно, для быстрого нахождения йодного числа.

    12. Изменение белков при различной обработке молока

1). Изменение структуры и свойств белков при гомогенизации. 2). Изменение структуры и свойств белков при новых методах обработки молока. Гомогенизация оказывает сильное воздействие на молочный жир, но изменениям подвергаются белки и соли молока. В результате гомогенизации меняются и технологические свойства молока—вязкость, кислотность, продолжительность сычужного свертывания, структурно-механические и синеретические свойства сычужных и кислотных сгустков, а также термоустойчивость гомогенизированных молочных эмульсий при последующей тепловой обработке.

Гомогенизация применяется для диспергирования жировой фазы молока. При гомогенизации цельного молока и сливок на вновь образующейся поверхности жировых шариков адсорбируются белки молочной плазмы и их фрагменты. Об этом свидетельствуют данные, представленные в таблице.

    Массовая доля белков, %
    Компонент
    До гомогенизации
    После гомогенизации
    Оболочка жирового шарика
    Плазма молока
    Оболочка жирового шарика
    Плазма молока
    Белок
    4, 3
    96, 6
    8
    92
    Фосфопетиды
    67, 4
    32, 6
    54, 1
    45, 9
    Холестерон
    86
    14
    70, 2
    29, 8
    Кислая фосфатиз.
    72, 7
    27, 3
    36, 0
    63, 1

Дисперование казеина в цельном гомогенизированном молоке может быть вызвано только действием адсорбционных сил, возникающих при увеличении поверхности жировой фазы, а гидромеханические силы в клапанной щели гомогенизатора на казеиновые мицеллы не действуют.

В процессе гомогенизации меняется форма и структура казеиновых мицелл, они приобретают неровные края, их поверхность как бы разрыхляется, оголяются гидрофобные участки, при этом происходит как диспергирование, так и агрегирование частиц.

Поверхностная денатурация сопровождается необратимыми изменениями четвертичной, третичной и вторичной структур белковых молекул. Поверхностная денатурация оболочечного казеина сопровождается некоторым понижением его термоустойчивости, что может привести к снижению тепловой стабильности гомогенизиров. в/ж молочных эмульсий.

Если предположить, что на жировых шариках после гомогенизации адсорбируются не целые мицеллы, а их фрагменты и субмицеллы, то преобладание в оболочечном белке __-казеина можно объяснить двумя причинами. Во-первых, при гомогенизации разрушаются в основном крупные мицеллы, которые содержат больше ___-казеина. Во-вторых, __-казеин характеризуется высокой способностью адсорбироваться на жировых шариках вследствие наличия гидрофобного __-конусового пептида, содержащего 23АК остатка. Также адсорбиционной способностью обладает и __-казеин, содержание его в хранившем молоке увеличивается. В состав оболочек жировых шариков кроме казеина и входят сыворотные белки, которые вовлекаются на поверхность шариков после денатурации и комплексообразования с казеином. Особенно такое состояние характерно для гомогенизированного пастеризованного молока, где от____ более высокая степень адсорбулина жировыми шариками молочных белков.

Во время гомогенизации имуноглобулина взаимодействуют с ___-казеином, что влияет на потерю способности молока аглютгенировать жировые шарики после гомогенизации. Сывороточные белки непрочно закреплены во внешнем слое оболочек и легко удаляются из него при промывке жировых шариков.

Таким образом, не все белки подвергаются изменению, меняются оболочные белки, а белки плазмы структуру и свойства не меняют, но некоторая их часть расходуется на построение оболочек жировых шариков. Это казеин, его крупные мицеллы. Таковые изменения белков, изменение солевого баланса молока влияют на термоустойчивость, способность образовывать сгустки и другие технологические свойства гомогенизирования молочных продуктов.

Гомогенизация молочного сырья наряду с положительными сторонами —снижением продолжительности сычужного свертывания и потерь жира с сывороткой; имеет ряд недостатков—уменьшается прочность получаемых сычужных и кислотных сгустков, снижает скорость синере_иса, увеличивает потери белка при обработке сырного серна и др. Для устранения этих недостатков рекомендуется раздельная гомогенизация, а также модифицирование состава оболочек жировых шариков путем внесения в молоко казеина, натрия и других белковых добавок.

После гомогенизации тепловая стабильность молочных эмульсий понижается и тем значительнее, чем выше содержание жира в эмульсии и давление гомогенизации и чем ниже температура гомогенизации.

Гомогенизация не изменяет тепловую стабильность молочной плазмы. Термоустойчивость гомогенизированных эмульсий объясняется устойчивостью жировых шариков.

Тепловая коагуляция гомогенизированных молочных эмульсий объясняется тем, что здесь в роли коагулянтов выступают не казеиновые мицеллы, а жировые шарики, содержащие основной компонент—казеин. В начале нагревания молочной эмульсии первыми теряют свою стабильность сывороточные белки, которые после агрегации осаждаются вместе с коллоидным фосфатом кальция на оболочках жировых шариков и поверхности казеиновых мицеллы образуя плиты, далее изменяют казеин. В результате всех процессов поверхность жировых шариков и казеиновых мицелл теряет гидратную оболочку и агрегируют. Для повышения __-устойчивости гомогенизир. молочной эмульсии.

    — рекомендуется использовать свежее молоко и сливки;

— правильно подбирать режимы (температуру и давление) гомогенизации; —внесение ПАВ перед гомогенизацией в молоко и сливки с целью изменения качественного состава и структуры адсорбиционных оболочек жировых шариков; —т. е. при этом снижается адсорбция на поверхности жировых шариков белков плазмы и получают более стабильные системы.

2. Перспективные способы обработки молока — мембранные методы. —Ультрафильтрация. Используют при производстве концентратов сывороточных белков, сыров, творога, к/м напитков и других молочных продуктов.

УФ-молока при производстве сыров, вызывает особые трудности, связанные с изменениями свойств молочных белков. УФ-молока перед сычужным свертыванием экономически целесообразна, т. к. оно позволяет стандизировать содержание белка в исходном молоке и сокращать расход сычужного фермента и потери белка с сывороткой, способствует повышению выхода сыра. Но такое достигается, если низкая и средняя степени концентрирования (в 2 раза при выработке твердых сычужных сыров и в 3, 5-4, 5 раза при производстве мягких сыров). Если молоко концентрируется в 5 и более раз, то при этом снижается скорость синередиса сгустков и ухудшение консистенции и вкуса сыра, вследствие внедрения в структуру сгустка сывороточных белков.

Наиболее эффективно процесс гомообразования проходит при содержания 1_-15% белков в молочной смеси, при этом сокраается расход сычужного фермента без существенного увеличения продолжительности свертывания и ухудшения структурно-механических составов сгустка.

Перспективным является применение УФ-концентрата молока при выработке к/м продуктов. Однако внедрение мембранной технологии для обработки молока ограничено из-за высокой стоимости оборудования; трудностей, связанных с очисткой мембран и пр. Используют УФ и диафильтрации при обработке молочной сыворотки—и получают концентраты сывороточных белков с различными белково-углеводным и минеральным составом.

    Переработка молочного сырья на основе безмембранного ___

Способ основан на самопроизвольном разделении двухфазной системы биополимеров (обезжиренное молоко— раствор полисахарида) на две фазы: нижнюю — концентрат казеина и верхнюю — безказеиновая фаза — жидкий структурирующий пищевой концентрат. При этом казеин концентрируется в 5-7 раз не изменяя своего растворимого коллоидного состояния, по технологическим и функциональным свойствам он подобен казеинату натрия. его можно использовать в качестве белковых добавок, эмульгатора и стабилизатора коллоидных систем.

Структурирующий пищевой концентрат представляет собой растворимый комплекс сывороточных белков и углеводов (лактозы и поинсахаридов), обладающий высокими студнеобразующими и пенообразующими свойствами. С целью повышения биологической ценности и увеличения сроков хранения его применяют в производстве мороженого, кремов суфле и других структурированных пищевых продуктов.

В качестве полисахарида использовали пектин, или метилцеллюлозу.

    6. Фракционный состав казеина
    1). Характеристика основных фракций.
    2). Физико-химические свойства казеина.

В свежевыдоенном молоке казеин присутствует в форме мицелл, построенных из казеиновых комплексов. Казеиновый комплекс состоит агломерата (скопления) основных фракций: a, b, Y, Н -казеинов, которые имеют несколько генетических вариантов. Согласно последним данным казеин можно разделить по схеме (рис. 1), составленной на основе ревизии комитета по номенклатуре и методологии белков ассоциации американских ученых в области молочной промышленности. (ADSA).

Все фракции казеина содержат фосфор, в отличие от сывороточных белков. Группа as-казеинов обладает наибольшей электрофоретической подвижностью из всех казеиновых фракций.

as1-казеин — основная фракция as-казеинов. Молекулы as1-казеина состоят из простой номенклатурной цепи, содержащей 199 аминоклислотных остатков. Подобноb-казеину и в отличие от Н-казеина не содержит цистин. as2-казеин — фракция as-казеинов. Молекулы as2-казеина состоят из простой полептиптидной цепи, содержащей 207 аминокислотных остатков. Имеет свойства, общие как сas1-казеином, так и с Н-казеином. Подобно Н-казеину и в отличие от as1-казеина содержит два остатка цистеина: as-казеин — фракция as-казеинов. Содержание ее составляет 10% от содержания as1-казеина. Имеет структуру, идентичную структуре as1-казеина, за исключением расположения фосфатной группы. b-казеин, молекулы его состоят из простой политептидной цепи, содержат 209 аминокислотных остатков. Не имеет в своем составе цистеина и при концентрации ионов кальция, равной концентрации, их в молоке, нерастворим при комнатной температуре. Эта фракция наиболее гидрофобная, благодаря высокому содержанию пролина.

Н-казеин —имеет хорошую растворимость, ионы кальция не осаждают его. При действии сычужного и других протеолитических ферментов Н-казеин— распадается на пары — Н-казеин, осаждающийся вместе с as1, as2 — b- казеинами. Н-казеин является фосфогликопротеидом: содержит — триуглеводгалактозу, галактозамин и N-ацетил —нейралиновую (сиаловую) кислоту. Группа U-казеинов являются фрагментами b-казеина, образовавшиеся путем протеолиза b-казеина ферментами молока. Сыворотные белки — являются термолабильными. Начинают свертываться в молоке при температуре 69оС. Это простые белки, они построены практически только из аминокислот. Содержат в значительном количестве серосодержащие аминокслоты. Не коагулируют под действием сычужного фермента.

Лактоальбуминовая фракция —это фракция термолабильных сывороточных белков, которая не осаждается из молочной сыворотки при полунасыщении ее сульфатом аммония. Она— представлена b-лактоглобулином и a-лактоальбумином и альбумином сыворотки крови. b-лактоглобулин —основной белок сыворотки. Нерастворим в воде, растворяется только в разбавленных растворах солей. Содержит свободные сульфгидрильные группы в виде остатков цистеина, которые участвуют в образовании привкуса кипяченого молока при тепловой обработке последнего. a-лактоальбумин —второй основной белок сыворотки. Выполняет особую роль в синтезе лактозы, является компонентом фермента лактозосинтетазы, который катализирует образование лактозы из уридин-дифосфатгалактозы и глюкозы.

Альбумин сыворотки крови попадает в молоко из крови. Содержание этой фракции в молоке коров, больных маститом, значительно больше, чем в молоке здоровых коров.

Иммуноглобулины —это фракция термолобильных сывороточных белков, осаждаемая из молочной сыворотки при полунасыщении ее сульфатом аммония или насыщении сульфатом магния. Она является гликопротеидами. Объединяет группу высокомолекулярных белков, имеющих общие физико-химические свойства и содержащих антитела. В молозиве количество этих белков очень велико и составляет 50-75% от содержания всего белка молозива.

Иммуноглобулины очень чувствительны к нагреванию. Иммуноглобулин разделяют на три класса: Uг. , Ur M (UM) и Ur А (UА), а класс Ur в свою очередь делится на 2 подкласса: Ur (U1) и Ur 2 (U2). Основной фракцией иммуноглоубинов является Ur 1 Протеозо-пептонная фракция (20%) относится к термостабильным высокомолекулярным пептидам, которые не выпадают в осадок при выдерживании при 95оС в течение 20 мин. и последующем подкислении до рН 4, 6, но осаждаются 12%-ной трихлоруксусной кислотой. Протеозо-пептонная фракция представляет собой смесь фрагментов молекул белков молока. Эта фракция является промежуточной между собственно белковыми веществами и полипептидами. Электрофорез в полиакриламидном Геле выявил около 15 электрофоретическки различных зон, основные из которых— компоненты 3, 5 и 8 —характеризуются низким содержанием ароматических аминокислот и метионина и сравнительно высоким— глутаминовой и аспаргиновой аминокислот. Содержат углеводы.

    5. Физические свойства молока
    1). Плотность, вязкость, поверхностное натяжение.
    2). Осмотическое давление и температура замерзания.
    3). Удельная электропроводность.

Плотность молока или объемная масса р при 20оС колеблется от 1, 027 до1, 032 г/см2, выражается и в градусах лактоденсиметра. Плотность зависит от температуры (понижается с ее повышением), химического состава (понижается при увеличении содержания жира и повышением при увеличении количества белков, лактозы и солей), а также от давления, действующего на него.

Плотность молока, определенная сразу же после доения ниже плотности, измеренной через несколько часов на 0, 8-1, 5 кг/м3. Это объясняется улетучиванием части газов и повышением плотности жира и белков. Поэтому плотность заготовляемого молока необходимо измерять не ранее чем через 2 часа после дойки.

Величина плотности зависит от лактационного периода, болезней животных, пород, кормовых рационов. Так. молозиво и молоко полученные от разных коров, имеют высокую плотность за счет повышенного содержания белков, лактозы, солей идругих составных частей.

Определяют плотность различными методами, технометрическими, ареометрическими и гидростатическими весами (плотность мороженого и молока в Германии). На плотность молока влияют все его составные части — их плотность, которые имеют следующую плотность: г/см3

    вода — 0, 9998; белок — 1, 4511; жир — 0, 931;
    лактоза — 1, 545; соли — 3, 000.

Плотность молока изменяется от содержания сухих веществ и жира. сухие вещества повышают плотность, жир понижают. На плотность оказывают влияние гибратация белков и степень отвердевания жира. Последнее зависит от температуры, способа обработки и частично от механических воздействий. С повышением температуры плотность молока уменьшается. Это объясняется прежде всего изменением плотности воды— главной составной части молока. В диапазоне температур от 5 до 40оС плотность свежего обезжиренного молока в пересчете на плотность воды с повышением температуры снижается сильнее. Такое отклонение не наблюдается в опытах с 5%-ным раствором лактозы.

Поэтому снижение плотности молока можно объяснить изменением гидратации белков. В диапазоне температур от 20 до 35оС можно наблюдать особенно сильное падение плотности сливок. Оно обусловлено фазовым переходом «твердый-жидкий»— в молочном жире.

Коэффициент расширения молочного жира значительно выше, чем воды. По этой причине плотность сырого молока при колебаниях температуры изменяется сильнее, чем плотность обезжиренного молока. Эти изменения тем больше, чем выше содержание жира.

Между плотностью, содержанием жира и сухого обезжиренного остатка существует прямая связь. Так как содержание жира определяют традиционным методом, а плотность измеряют быстро ареометром, то можно быстро и просто рассчитать содержание сухих веществ в молоке без трудоемкого и длительного определения сухих веществ путем сушки при 105оС. Для чего используют формулы пересчета: С=4, 9ЧЖ+А + 0, 5; СОМО=Ж+А+ 0, 76,

    где С — массовая доля сухих веществ, %

Страницы: 1, 2, 3, 4


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ