Рефераты

Разработка Мыковского карьера лабрадоритов - (реферат)

p>Службами предприятий по добыче и переработке полезных ископаемых ведётся контроль за нарушением и загрязнением природных объектов, в том числе за выбросами в атмосферу.

Основные контролируемые характеристики динамических атмосферных процессов –температура воздуха, атмосферное давление, относительная влажность, количество атмосферных осадков, скорость и направление ветра, прямая и рассеянная солнечная радиация.

Значения перечисленных показателей определяют степень концентрации или рассеивания загрязняющих веществ, выбрасываемых в атмосферу, уязвимость природных комплексов зоны поражения.

К наиболее ответственным показателям относятся результаты контроля воздуха в зоне загрязнения промышленным предприятием. Правила наблюдений регламентируются ГОСТом 17. 2. 3. 01-86.

Методы контроля качества воздушной среды разделяются на группы: Метод непрерывного производственного контроля.

    Метод периодического контроля.
    Метод определения разовых концентраций.

При этом в каждой группе методов выделяются подгруппы по технологическим признакам выполнения исследований.

Методы непрерывного контроля с автоматической регистрацией исследуемых величин наиболее совершенны. Они позволяют получить достаточно полную характеристику очага загрязнения.

Периодический контроль обеспечивает получение характеристики загрязнения атмосферы через определённые отрезки времени, увязываемыми с циклами производственных процессов. При периодическом контроле атмосферного воздуха анализ проб обычно производится в лабораторных условиях.

Пользование разовыми методами контроля воздушной среды обычно приурочивается к экстремальным условиям, проведению эксперементальных работ по эффективности защиты атмосферного воздуха от загрязнений или к измерениям, проводимым напосредственно на рабочих местах для установления комфортных условий труда. В непрерывном производственном контроле наиболее широкое применение нашёл кулонополярографический метод анализа, который осуществляется с использованием стационарных непрерывно действующих приборов, предназначенных для определения газового состава воздуха.

Метод основан на реакции поглащения исследуемого газа в титрационной ячейке. Электрохимическая ячейка является основным узлом газоанализатора, где осуществляется сопоставление исследуемого воздуха с эталонным газом, результаты которого передаются в регистрирующее устройство.

Широкое применение при контроле содержания вредных примесей в атмосфере получили оптические газоанализаторы. По принципу действия они делятся на: абсорбционные, эмиссионные, оптико-аккустические, фотоколорометрические, фотометрические.

Физко-химические методы анализа атмосферного воздуха разнообразны, наибольшее распростронение имеют газохроматографические и масспектрографические методы. Применение этих методов особенно эффективно при определении состава сложных выбросов загрязняющих веществ, они обеспечивают комплексное изучение загрязнителей по всем составляющим инградиентам.

Весьма перспективен электрохимический метод, в котором используются специальные датчики, представляющие собой электрохимический элемент, действующий на принципе процесса электролиза с регулируемым потенциалом при управляемой диффузии.

Всё более широкое применение для контроля атмосферного воздуха получают методы, основанные на использовании лазеров, отличающиеся высокой точностью и быстродействием. Среди них выделяют две группы методов: производящих анализ газов, отобранных в аналитическую кювету и осуществляющих анализ воздуха в открытом пространстве без отбора проб воздуха.

Первый метод основан на явлении резонансного поглащения лазерного излучения в анализируемом газе; спомощью его определяются (без перестройки установки) около 20 поллютантов, в том числе концентрация и дисперсность аэрозоля. Во втором методе используются эффекты взаимодействия световой волны с воздушной средой: аэрозольное молекулярное рассеяние, спонтанное комбинационное рассеяние, резонансное рассеяние и резонансное поглащение.

В этом дистанционном способе определение состояния воздушной среды используются лазерные локаторы (лидары) в сочетании с лазерами–источниками излучения. На рис. 11. 1. представленна схема одной из систем лазерного зондирования, применяющаяся для контроля загрязнения надкарьерной атмосферы и обеспечивающая непрерывную регистрацию количества загрязнителей в толще воздушного слоя в пределах до 1, 2-2 км.

Экспресс-методами определяют в основном допустимые концентрации загрязняющих веществ на рабочих местах, поэтому приборы отличаются небольшой массой и портативностью.

Программа контроля экологической безопасности на Мыковском карьере.

А. Для контроля за состоянием воздуха на карьере ежедневно производится отбор проб для анализа воздуха на содержание в нём вредных газов и запылённости в соответствии с“Инструкцией по определению запылённости и загазованности атмосферы карьеров”. Запылённость и содержание вредных примесей в атмосфернов воздухе карьера не должно превышать их нормативных значений, предусмотренных санитарными нормами и“Правилами безопасности при разработке месторождений полезных ископаемых открытым способом”.

Б. Для контроля за составом выхлопных газов, выделяемых при работе карьерных машин с двигателями внутреннего сгорания, ежемесячно производится отбор проб газов и их анализ, а также регулировка двигателей с целью снижения выделения вредных газов.

При эксплуатации в карьерах транспортных и технологических машин с двигателями внутреннего сгорания выхлопные газы нейтрализуются до выхода их в воздушную среду путём каталитического окисления вредных компонентов.

Каталитические реакторы устанавливаются в выхлопной системе, которая часто несколько удалена от двигателя в зависимости от конструкции, используется для удаления не только НС и СО, но и NOx.

Для автомобильных транспортных средств используются такие катализаторы, как платина и палладий–для окисления НС и СО. Для уменьшения содержания оксидов азота в качестве катализатора используется родий. Для того, чтобы каталитическое окисление происходило нормально, окисляющие катализаторы требуют некоторого количества кислорода, а восстанавливающие катализаторы некоторое количество СО, НС или Н2 (рис. 11. 2. ). Эффективность катализаторов может быть снижена присутствием соединений металлов, которые могут поступать в выхлопные газы из топлива, добавок смазывающих материалов, а также вследствии износа металлов. Это явление известно под названием“отравление катализатора”.

Особенно существенно понижают активность катализаторов антидетонационные добавки тетроэтил свинцаи, таким образом, по возможности следует использовать бензин без свинца.

Катализаторы из благородных металлов отностительно эффективны при температурах выше 2500С, что позволяет оптимизировать эффективность работы двигателя в больших пределах.

Что касается дизельных двигателей, то до настоящего времени не существует устройств, которые могли бы осуществлять внешнее подавление их выбросов. А это в первую очередь связано с тем, что выбросы НС и СО у них достаточно малы при процессе горения. Кроме того низкие температуры выхлопных газов по существу исключает применение внешних устройств, действующих непрерывно. Существующая проблема связана с улавливанием части сажи из потока выхлопных газов. Дело в том, что частицы сажи очень малы– диаметр половины из них меньше 0, 5 мкм; плотность их тоже очень низка – 0, 005 г/см3. Как правило, выход аэрозоля составляет от 0, 1 до 0, 5 % массы топлива. Следовательно, традиционные фильтры быстро забиваются.

Альтернативой является использование специальных фильтров-ловушек. Они состоят из сеток, выполненных из коррозионностойкой стали, за которыми следует керамический фильтр. В карамическом фильтре имеются блоки, которые можно менять. Таким образом, поток выхлопных газов проходит через пористую структуру, а частицы могут доокислятся, если температура выхлопных газов выше 6000 С, а время пребывания несколько минут. Снижение вредных выбросов обеспечивается также в результате нормализации режимов работы двигателей, достигаемой при улучшении качества транспортных трасс.

В. Один раз в месяц и после обильных дождей производится анализ сбрасываемой из карьера воды на содержание в ней растворённых частиц (веществ) и минеральных частиц, содержание которых не должно превышать предельно-допустимых концентраций (ПДК).

Г. Контроль за выполнением рекультивационных работ осуществляется сельхозорганами Коростышевского района, а также органами Госнадзорохрантруда Украины.

Д. Контроль за качеством воды в карьере, используемой на хозпитьевые нужды, должен регулярно проводится местными органами санитарного надзора. Периодичность проверки назначается при эксплуатации карьера.

    Комплекс мероприятий по уменьшению выбросов в атмосферу.

Проектом предусматривается два вида мероприятий по уменьшению загрязнения атмосферного воздуха, а именно:

    Технологические мероприятия.

Технологические мероприятия содержат применение в основном буроклинового способа разделки монолитов на блоки, а также невзрывчатого разрушающего средства НРС.

НРС получают специальным обжигом карбонатных пород с последующим измельчением продукта обжига со специальными добавками. Этот порошкоподобный материал светло-серого цвета , пылеватый, негорючий, взрывоопасный, который имеет щелочные свойства.

Порошок НРС-1 характеризуется стабильностью свойств, длительным сроком пригодности. К недостаткам относят технологическую сложность обжига негашёной извести.

В случае использования НРС камень разрушается без выбросов твёрдых и газоподобных продуктов. При этом отсутствуют звуковые и другие колебания. Невзрывчатое разрушающее вещество используется для отделения монолита от массива.

В объекте, который подлежит разрушению, бурят шпуры, диаметр и глубина которых зависит физико-технических характеристик разрушаемой породы. С увеличением диаметра шпура возрастает разрушающее усилие, но вместе с тем увеличивается вероятность холостого выстрела шпура. Глубина шпура составляет не менее 70% от высоты раскалываемого каменя. Шпур заполняется рабочей смесью на всю глубину. Готовят рабочую смесь в открытой посуде, к которую вливают строго отмеренное количество воды, после чего в неё постепенно всыпают определённое количество НРС и тщательно перемешивают до получения хорошей текучести, причём длительность перемешивания должна быть не больше 10 минут. Температура воды, которая используется для приготовления раствора НРС, должна быть не больше чем 250С. Чем холоднее вода, тем дольше рабочая смесь остаётся текучей. Приготовленную рабочую смесь заливают в шпуры.

В начальный период не допускается попадание воды в шпур, залитый рабочей смесью, поэтому рабочую смесь во время дождя защищают от попадания воды. После образования трещены в породе следует распылять воду на поверхность разрушаемого объекта, которая благоприятствует расширению трещин и ускоряет процесс направленного разрушения. В результате химической реакции масса в шпуре расширяется, что и создаёт раскалывающее усилие, которое увеличивается с течением времени. От этого усилия в породе возникают напряжения, которые приводят к созданию трещин, а расширяющее усилие поддерживается после их появления.

Расход НРС на 1 м3отделяемой породы зависит от её прочности, наличии в ней трещин, объёма отделяемого монолита и его линейных параметров, глубины шпуров, межшпуровых расстояний и других показателей. Эта потеря для разных пород и условий составляет 2…3 кг/м3. Во время работы с НРС важно придерживаться правил техники безопасности. НРС экологично чистое вещество, работа с ним не требует высокой квалификации персонала и бесшумна, развивает большие усилия в шпуре, снижает объём буровых работ, а также даёт возможность регулировать размеры блоков с минимальным выходом сырья.

Однако использование НРС при добыче блоков характеризуется рядом недостатков, а именно: ограниченная возможность его использования при низких температурах (ограничение по температуре породного массива 6…250С); высокая гигроскопичность порошка; необходимость точного соблюдения соотношения НРС и воды в рабочей смеси, нарушение которого не только снижает работоспоробность НРС, но и привести к“отказам”.

Оптимальные температурные условия работы НРС, если длительность его срабатывания 8…12 часов– температура в интервале 20? 50 С. В случае использования НРС в породных массивах температурой ниже +50 С время его срабатывания увеличивается до двух суток и больше. В связи с этим применяется технология, которая даёт возможность поддерживать оптимальную температуру рабочей смеси в шпурах электронагревателями (рис. 11. 3. ). Нагреватели изготовляют из нихромовой проволоки диаметром 1, 2…2, 0 мм. Мощность электрического тока, который подаётся на нагреватели, в пересчёте на 1м шпура 210…320 Вт, напряжение питания не превышает 36 В, что удовлетворяет требования техники безопасности. При подогреве указанными нагревателями порошок срабатывает через 5…6 часов в породном массиве, температура которого достигает–200 С. Электронагреватели можно изготовить в условиях какого-либо карьера, а после разрушения объекта они пригодны для повторного использования. Снижение пылевыделения в процессе бурения скважин на карьере достигается за счёт предварительного увлажнения породных массивов, а также орошением забоя шпуров.

Перед заливкой НРС в шпуры их тщательно очищают от пыли и обломков породы, а также удаляют оставшуюся воду.

Покрытие карьерных автодорог щебнем и отсевом, а также периодический полив автодорог с целью уменьшения пылеобразования при движении автотранспорта является недостаточно эффективным средством. Полив автодорог характеризуется кратковременностью действия, возможностью применения только в летнее время и снижением срока службы автодорог.

Наиболее целесообразным считается способ снижения пылевыделения за счёт связывания пылевых фракций продуктов износа дорожных покрытий вяжущими веществами с образованием эластичного“коврика” из этих компонентов. Вяжущие вещества выбираются с учётом удовлетворения следующих требований: эластичное, но достаточно прочное связываниепылевых фракций износа дорожных покрытий; нетоксичность, нерастворимость в воде, неагрессивность к резине и металлу и экономичность применения.

В таблице 11. 2. приведены характеристики некоторых пылесвязывающих веществ. Таблица 11. 2.

    Пылесвязывающее
    вещество
    Удельный расход,
    л/м2
    Срок обеспыливания, ч
    Вода
    Сульфатно-спиртовая барда
    Хлорид кальция
    Мазут
    Универсин
    1, 0
    1, 0
    1, 5
    4, 0
    1, 0
    1, 5
    120, 0
    240, 0
    600, 0
    160, 0-300, 0

На Мыковском карьере эффективно применение двух выше приведённых способов в определённой последовательности.

Для полива бортов отвала и автодорог применяется приобретённая для этих целей поливомоечная машина, включающая пропеллерный ротор с приводом и оросительную систему, на шасси ЗИЛ-431412 (рис. 11. 4. ).

Установка состоит: из транспортного средства 1, имеющего выхлопную трубу 2, на котором расположен компрессор 3 и ёмкость 4 для воды, насоса 5, размещённого в кожухе 6, который соединён с выхлопной трубой 2, форсунок 7, закреплённых на ограждении 8 над пропеллерным ротором 9, трубопровода 10 для воды, гидроцилиндра 13 для регулирования направления подачи воздушной смеси. Трубопровод размещён внутри воздухопровода 11 и снабжён вентилем 12. Такая установка работает следующим образом:

Жидкость под давлением из ёмкости 4 насосом 5 подаётся в пневмогидравлические форсунки 7, где подвергается распылению сжатым воздухом, вырабатываемым компрессором. При этом, в зависимости от температуры окружающего воздуха, подавление пыли осуществляется: при отрицательной температуре– исскуственным снегом, при положительной температуре – охлаждённой водовоздушной смесью. С целью исключения замерзания гидросистемы установки насос 5 размещён в кожухе, куда подведена труба 2 для отвода выхлопных газов автомашины, а трубопровод 10 для воды размещён внутри воздухопровода 11, подсоединённого к компрессору 3. При этом трубопровод и воздуховод снабжены вентелями. При работе установки вентели трубопровода и воздухопровода полностью открыты, после окончания работы установки вентель водопровода перекрывают и производится продувка пневмогидравлических форсунок сжатым воздухом. Регулирование направленной воздушной смеси к воздушному потоку производится включением гидроцилиндра 13, прикреплённого одним концом к ограждению 8, а другим к блоку пневмогидравлических форсунок 7.

    Мероприятия санитарно-экологического характера.

Снижение пылевыделения с породных отвалов и откосов бортов карьеров, происходящего вследствие интенсивной ветровой эрозии пород, сводится к выбору наиболее эрозийно устойчивых форм породных отвалов, упрочению откосов нерабочих бортов карьеров и производству рекультивационных работ.

Наиболее интенсивной ветровой эрозии подвергаются боковые поверхности отвалов, поэтому снижение пылевыделения достигается за счёт сокращения площадей боковых поверхностей отвалов. Невысокие отвалы правильных геометрических форм, а именно усечённой пирамиды, при прочих равных условиях характеризуется наибольшей эрозийной устойчивостью. При расположении отвалов на земельных отводах учитывается направление господствующих ветров.

Взаимосвязь основных параметров отвала, имеющего правильную геометрическую форму (усечённую пирамиду) определяется по следующим формулам:

где: Vп – объём отвала, имеющего форму усечённой пирамиды, м3; В – ширина основания отвала, м;

n – соотношение длины и ширины основания отвала с прямоугольным основанием; Sв – площадь верхней поверхности отвала, м2;

    Sб – площадь боковой поверхности отвала, м2;
    Н – высота отвала, м;
    ? - угол откоса, град.
    Открытая площадь отвала составляет 20000 м2.

Пылевыделение с отвалов и нерабочих откосов бортов карьера значительно снижается за счёт обработки наиболее эрозирующих поверхностей пылесвязывающим раствором, а также за счёт гидропосева многолетних трав.

К санитарно-экологическим мероприятиям отнесено также соблюдение санитарно-защитной зоны.

При бурении шпуров станками СБУ-100Г пылеулавливание осуществляется пылеуловителями ДСП-3.

    Характеристика пылеуловителя ДСП-3:
    Тип пылеуловителя…………………………………...Эжекторный
    Расход воздуха, м3/с…………………………………. 0, 01
    Вместимость разгрузочного мешка, кг…………… 60-65
    Размеры (диаметр х высота), мм…………………… 320 х 850
    Масса пылеуловителя, кг……………………………. 20

Для станка СБУ-100Г, оборудованного установкой для сухого пылеулавливания, предусмотрено орошение разгружаемой из бункера буровой мелочи. Расход воды на орошение 1 м скважины составляет 2-3 литра.

Пылеулавливающая установка состоит из защитного колпака конусной формы, пылеосадительной камеры с подъёмным устройством (фильтр тонкой очистки), соединённой вертикальным металлическим пылепроводом с парным циклоном, имеющим в нижней части разгрузочное устройствов виде бункера, фильтрационной камеры с разгрузочным бункером, соединённой посредством воздуховода с вентилятором и диффузором.

Устройство содержит герметизатор устья скважины, связанный посредством трубопровода с пылеосадительной камерой второй ступени очистки, и аэродинамический экран-отражатель, последний размещён в пылеосадительной камере и выполнен в виде ориентированной навстречу выходящему из трубопровода пылевоздушному потоку части сферы, радиус которой равен 2, 5 d трубопровода, а длина экрана хорды составит 4 d трубопровода, при этом экран установлен под углом 480 к оси трубопровода.

Вторая ступень очистки осуществляется присоударении частиц выходящего из трубопровода потока пыли с аэродинамическим экраном отражателем. При этом выпадение мелких частиц пыли в бункер, благодаря конструкции последнего, не уступает циклону.

Устройство пылеулавливания в буровом станке (рис. 11. 5. ), содержащем ходовую часть 1, рабочий орган с вращателем 2 и буровой став 3, включает генератор устья скважины 4, отсасывающий трубопровод 5, пылеосадительную камеру 6 с бункером 7 и фильтром тонкой очистки. В камере на пути потока пыли из трубопровода установлен аэродинамический (с направленным движением) экран–отражатель 8 с вогнутой поверхностью. В верхней части пылеосадительной камеры имеется вентилятор с диффузором 9.

В процессе бурения сжатый воздух подаётся по буровому ставу 3 к забою скважины, откуда буровая мелочь с потоком воздуха по затрубному пространству выносится и попадает в герметизатор устья скважины 4, где скорость потока снижается и вокруг устья выпадают самые крупные фракции и частично пыль (1-я ступень очистки). Далее, по отсасывающему трубопроводу 5 поток пыли поступает в бункер 7 пылеосадительной камеры, где его частицы, соударяясь с экраном-отражателем, осаждаются в бункер 7 (2-я ступень очистки).

Благодаря заданным параметрам экран-отражатель создаёт такую аэродинамику, при которой осаждение частиц из потока пыли происходит более эффективно. Затем самая мелкая пыль поступает на фильтр тонкой очистки в камере 6 (3-я ступень очистки). Очищенный воздух засасывается из камеры вентилятором с диффузором 9 и выбрасыванется в атмосферу. Содержание пыли в очищенном воздухе находится в допустимых пределах санитарно-гигиенических норм.

    Охрана воздушного бассейна от пылевых выбросов.

11. 7. 1. Охрана воздушного бассейна от пылевых выбросов горного предприятия.

На каждом предприятии, в том числе и на Мыковском карьере, экологическая служба разрабатывает мероприятия по снижению загрязнений окружающей среды до уровня предельно допустимого значения.

Охрана воздушного бассейна, особенно в ППК с многочисленными источниками выброса загрязняющих веществ, очень сложная задача и требует поэтапного решения. Поэтому, определив, плановый показатель на конец реализации комплексной схемы, необходимо разработать программу поэтапного достижения конечного результата. Методически здесь возможны два подхода. Выбираются возможные мероприятия, поэтапное внедрение которых обеспечит достижение ПДВ для каждого источника воздействия по каждому загрязняющему веществу. Для мероприятия определяются показатели его экологической эффективности, которые становятся плановыми на момент его внедрения. Такой подход может быть проиллюстрирован в табл. 11. 3.

    Таблица 11. 3.
    Загрязняющее
    вещество
    Фактическая
    интенсивность
    выброса, г/с
    Меро
    прия
    тия
    Интенсивность выброса после
    внедрения мероприятия, г/с
    ВСВ-1
    ВСВ-2
    ВСВ-3
    ПДВ
    Пыль
    нетоксичная
    Х
    № 1
    № 2
    № 3
    № 4
    Х
    Х
    Х
    0, 7

Выносится корректировка в процесс формулирования стратегической задачи, которая разбивается на отдельные этапы, каждый из которых позволяет добится предельного результата.

Достижение ПДК в “расчётной точке”на границе жилого массива от всех источников выброса каждого загрязняющего вещества с учётом фоновых концентраций при скорости ветра, наиболее часто втречающейся в данном направлении (ВСВ-1).

Достижение ПДК в “расчётной точке”на границе жилого массива от всех источников выброса с учётом фоновых концентраций при неблагоприятных метеорологических условиях (ВСВ-2). Достижение ПДК на границе санитарно-защитной зоны предприятия от всех источников выброса загрязняющими веществами в неблагоприятных метеорологических условиях (ВСВ-3).

Достижение ПДК от всех источников выброса каждого загрязняющего вещества с учётом фоновых концентраций в любой точке в неблагоприятных метеорологических условиях (ПДВ).

Определив показатели интенсивности выброса, для каждого из перечисленных вариантов выбирают мероприятия, позволяющие достичь эти промежуточные показатели, которые называют временно согласованным выбросом (ВСВ), так как их принятие в качестве плановых требует согласования с контролирующими органами. Второй подход к определению промежуточных плановых показателей более предпочтителен, так как позволяет решать конкретные природоохранные задачи. Мероприятия в этом случае должны обязательно включать график работы предприятия в неблагоприятных метеорологических условиях. Такой график должен быть разработан как мероприятие № 1. Он должен предусматривать соответствующий режим работы оборудования при возникновении неблагоприятных метеорологических условий.

Выбор и обоснование мероприятий по охране воздушного бассейна в общем случае производится в следующей последовательности.

На первом этапе выбирается вариант главных задач по охране воздушного бассейна. Для предприятия по добыче полезных ископаемых могут быть сформулированы четыре варианта таких задач:

Сохранение состояния воздушного бассейна и степени улавливания ценных компонентов на достигнутом уровне.

Улучшение состояния воздушного бассейна в зоне действия предприятия до санитарных норм.

Улучшение состояния воздушного бассейна для повышения продуктивности сельскохозяйственных, лесных и других угодий в зоне действия предприятия. Повышение эффективности улавливания ценных компонентов, не представляющих опасности по загрязнению воздушного бассейна.

На втором этапе производится обоснование плановых показателей по периодам реализации комплексного плана охраны воздушного бассейна исходя из требований к качеству атмосферного воздуха в различных структурных звеньях природопромышленного комплекса.

На третьем этапе выбираются технически возможные инженерные, экологические и организационные мероприятия по каждому источнику загрязнения с учётом метеорологических условий, определяющих эффективность рассеивания загрязняющих веществ в атмосфере.

Выбор варианта главных задач по охране воздушного бассейна производится на основе результатов оценки его фактического состояния в зоне действия предприятия с учётом вклада загрязнения других промышленных объектов, а также предприятий коммунально-бытового и аграрного звена в следующей последовательности:

Первый вариант главных задач выбирается в том случае, если при расчёте рассеивания загрязняющих веществ от всех организованных источников загрязнения с учётом фоновой концентрации концентрация загрязняющих веществ в любой точке не превышает санитарных норм, установленных для рабочей зоны, коммунально-бытового звена, рекреационных объектов. При этом на промплощадке, а также на площади земельного отвода должны быть учтены выбросы неорганизованных источников загрязнения, и концентрация в зонах их действия должна быть определена как суммарная с концентрацией от организованных выбросов. Аналогично определяется концентрация в“расчётных точках”коммунально-бытового звена, вблизи рекреационных объектов, где кроме организованных выбросов необходимо учесть работу автомобильного транспорта, пыление дорог и выбросы других неорганизованных источников загрязнения. В этом случае разработка комплексного плана охраны воздушного бассейна ведётся исходя из перспективных планов развития производства с учётом появления новых источников загрязнения воздушного бассейна.

Второй вариант главных задач выбирается в том случае, если при расчёте рассеивания загрязняющих веществ от всех организованных источников загрязнения с учётом фоновой концентрации и концентрации от неорганизованных источников загрязнения получено превышение соответствующих предельно допустимых концентраций в жилом массиве или в рабочей зоне.

В этом случае разработка комплексного плана охраны воздушного бассейна строится исходя из необходимости достижения санитарных норм определёнными источниками загрязнения и особенностей климатических условий в зоне действия предприятия. Третий вариант главных задач выбирается в том случае, когда предприятие находится далеко от объектов коммунально-бытового звена и требования к состоянию воздушного бассейна не могут быть определены по санитарным нормам. В то же время в зону действия предприятия попадают объекты аграрного звена: сельскохозяйственные, лесохозяйственные или рыбохозяйственные угодья, которым наносится ущерб из-за загрязнения воздушного бассейна.

В этом случае разработка комплексного плана охраны воздушного бассейна строится исходя из требований, которые предъявляются к его состоянию со стороны объектов аграрного звена, а показателем, определяющим эффективность мероприятий по охране воздушного бассейна, будет величина снижения экономического ущерба от недополучения продукции.

Четвёртый вариант главных задач выбирается в том случае, когда предприятие полностью выполняет все санитарные нормы охраны воздушного бассейна в зоне его действия и на рабочих местах, но имеются потери ценных компонентов в результате выброса их в атмосферу. Этими компонентами могут быть как газы, представляющие ценность для других отраслей производства, так и твёрдые вещества, улавливание и утилизация которых может сократить потери природных или материальных ресурсов, обеспечить их повторное использование.

В этом случае разработка комплексного плана охраны воздушного бассейна ведётся исходя из ценности улавливаемых и утилизируемых ресурсов и технических возможностей решения поставленной задачи. Показателем, определяющим эффективность мероприятий, будет превышение доходов от улавливания и утилизации ресурсов над расходами по осуществлению этих мероприятий.

Планирование показателей по периодам их реализации в зависимости от выбранного варианта главных задач производится путём определения количества загрязняющих веществ, которые можно выбросить в атмосферу с учётом удовлетворения требований к качеству атмосферного воздуха. Показатели планируются по каждому источнику загрязнения и в целом по предприятию.

При реализации первого варианта главных задач для каждого вновь строящегося объекта и для всех его источников загрязнения производится расчёт предельно допустимого выброса.

Рассчитанный показатель должен быть использован для выбора варианта технологии или мероприятий по улавливанию загрязняющих веществ на стадии проектирования вновь вводимого объекта, имеющего источник загрязнения воздушного бассейна. Однако в некоторых случаях обеспечение ПДВ для вновь вводимого в эксплуатацию объекта может оказаться технически недостижимо или экономически нецелесообразно. В этом случае на момент ввода нового объекта должны быть предусмотрены мероприятия на действующих объектах, снижающие фоновую концентрацию загрязняющих веществ в“расчётной точке”и позволяющие обеспечить ПДВ для вновь вводимого. Показатели, обеспечивающие указанные выше условия, будут плановыми.

При реализации второго варианта главных задач, когда требуется обеспечить санитарные нормы атмосферного воздуха в зоне действия предприятия, плановые показатели по периодам реализации комплексного плана охраны воздушного бассейна могут быть установлены путём расчёта ПДВ для отдельных источников и для предприятия в целом, для чего определяют количества загрязняющих веществ: которые можно выбрасывать в атмосферу при определённых погодных условиях, отличных от неблагоприятных, при соблюдении предельно допустимых концентраций в“расчётных точках”(жилой массив, рекреационные объекты) при различных направлениях ветра. После выбора мероприятий данные показатели утверждаютсяконтролирующими организациями в качестве ВСВ-1;

которые можно выбросить в атмосферу при неблагоприятных погодных условиях и опасных направлениях ветра (на жилой массив) при соблюдении санитарных норм в“расчётной точке”. После выбора мероприятий данные показатели утверждаются контролирующими организациями в качестве ВСВ-2;

которые можно выбросить из отдельного источника загрязнения при условии, что максимальная приземная концентрация от данного источника не превысит ПДК при любых погодных условиях (ВСВ-3);

при которых обеспечиваются санитарные нормы воздуха на границе санитарно-защитной зоны предприятия при любом направлении ветра в неблагоприятных условиях (ВСВ-4);

при которых обеспечиваются санитарные нормы воздуха в любой точке промплощадки предприятия (ВСВ-5). Эти показатели могут быть приняты за конечные в данном варианте главных задач комплексного плана охраны воздушного бассейна. При реализации третьего варианта главных задач, когда требования к состоянию воздушного бассейна устанавливаются на стадии разработки комплексных схем охраны земельных и водных ресурсов, показатели по периодам реализации комплексного плана охраны воздушного бассейна определяются путём расчёта ПДВ для отдельных источников и для предприятия в целом в следующей последовательности.

Определяются количества загрязняющих веществ, которые можно выбросить в атмосферу при условии:

затраты на мероприятия должны окупиться за счёт прироста объёмов сельскохозяйственной, лесохозяйственной, рыбохозяйственной продукции (снижения или ликвидации экономического ущерба), достигаемого в результате снижения степени вредного влияния загрязнения атмосферы на соответствующие угодья (ВСВ-1);

недопущения экономического ущерба от недобора сельскохозяйственной, лесохозяйственной, рыбохозяйственной продукции, когда вложенные в мероприятия затраты окупаются в нормативные сроки за счёт полученного результата в аграрном звене (ВСВ-2);

недопущения накопления загрязняющих веществ в сельскохозяйственной, лесохозяйственной и рыбохозяйственной продукции за период её выращивания и созревания (ВСВ-3). Эти показатели могут быть приняты за конечные плановые в данном варианте главных задач комплексного плана охраны воздушного бассейна. При реализации четвёртого варианта главных задач , когда требуется обеспечить условия улавливания и утилизацию ценных компонентов или ресурсов (материалов, газов, металлов, тепла) плановые показатели определяются в зависимости от технических возможностей реализации данного мероприятия и экономической эффективности их внедрения за счёт вовлечения в производство вторичных энергетических и материальных ресурсов или дополнительного извлечения (использования или снижения потерь). При этом плановые показатели определяются из расчёта количества веществ:

которые требуется уловить и утилизировать для достижения нормативных показателей их использования (потерь);

которые необходимо уловить и утилизировать для достижения показателей передовых предприятий отрасли;

которые можно уловить и утилизировать с учётом научных и технических достижений в нашей стране и за рубежём.

Эти показатели могут быть приняты за конечные плановые в данном варианте главных задач комплексного плана охраны воздушного бассейна. Выбор мероприятий по охране воздушного бассейна производится из всех возможных (инженерно-технологических, технических, экологических и организационных) методом вариантов. При этом в общем случае целесообразно придерживаться следующей последовательности.

Первоначально рассматриваются всевозможные технологические мероприятия, которые можно разделить на:

Связанные с совершенствованием или заменой источника выделения (котла, двигателя, дробилки, грохота, конвейера, погрузочного устройства и т. д. ). Предполагающие замену или изменение качества используемых материалов и добавок (топлива, флокулянтов, растворителей, наполнителей, взрывчатых веществ и т. д. ).

Направленные на замену технологии ведения работ (например, взрывной отбойки на механическую, автомобильного транспорта на конвейерный или трубопроводный и складирования пород в отвалы и закладку выработанных пространств и т. д. ). Возможен вариант, когда применение даже самой совершенной технологии не может обеспечить полную ликвидацию выбросов в атмосферу. В этом случае рассматриваются следующие технические мероприятия:

Устройство аспирационных систем и установка пылеулавливающего оборудования; Определение оптимальных для данных условий параметров источника выброса. Создание замкнутых схем использования газовоздушной смеси.

Экологические мероприятия, связанные с охраной воздушного бассейна, предполагают использование свойств атмосферы к рассеиванию загрязняющих веществ (абиатические мероприятия). Они применяются в том случае, если выброс загрязняющих веществ не превышает установленной нормы (ПДВ). В некоторых случаях можно использовать свойства растительности задерживать (пыль) или поглащать (газ) загрязняющие вещества (биотические мероприятия) для чего в пределах санитарно-защитной зоны предприятия создаются ветрозащитные полосы. Большую роль в охране воздушного бассейна играют организационные мероприятия, которые в первую очередь связаны с ликвидацией источников загрязнения, их передислокацией (планировочные мероприятия). Такая задача может решаться только в рамках территориальной межотраслевой структуры (ППК, ТПК). Оперативные мероприятия разрабатываются одновременно для всех предприятий района (города) в виде графиков работ источников загрязнения в неблагоприятных метеорологических условиях.

    11. 7. 2. Охрана воздушного бассейна на Мыковском карьере.

Плановый показатель по выбросу пыли на конец реализации комплексной схемы составляет–ПДВ: 0, 7 г/с (табл. 11. 4. ). Формулировка стратегической задачи, которая позволяет добится предельного результата: достижение ПДК на границе санитарно-защитной зоны предприятия от всех источников выброса загрязняющими веществами в неблагоприятных метеорологических условиях.

Возможен вариант, когда применение даже самой совершенной технологии не может обеспечить полную ликвидацию выбросов в атмосферу.

    Таблица 11. 4.
    Загрязняющее
    вещество
    Фактическая
    интенсивность
    выброса, г/с
    Меро
    прия
    тия
    Интенсивность выброса после
    внедрения мероприятия, г/с
    ВСВ-3
    ПДВ
    Пыль
    нетоксичная
    1, 04
    № 1
    1, 04
    0, 3

Для Мыковского карьера главная задача по охране воздушного бассейна сформулирована следующим образом: улучшение состояния воздушного бассейна для повышения продуктивности сельскохозяйственных, лесных и других угодий в зоне действия предприятия.

Такой вариант главных задач выбран исходя из того что Мыковский карьер находится далеко от объектов коммунально-бытового звена и требования к состоянию воздушного бассейна не могут быть определены по санитерным нормам. В это же время в зону действия предприятия попадают объекты аграрного звена: сельскохозяйственные и лесохозяйственные угодья, которым наносится ущерб из-за загрязнения воздушного бассейна.

Страницы: 1, 2, 3, 4, 5, 6


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ