Рефераты

Управление инвестиционными рисками

p> Другим фактором, часто используемым в линейных регрессионных моделях, является доходность некоторого выделенного портфеля ценных бумаг, который называется касательным. Каждому портфелю соответствует случайная величина rp – доходность.

[pic]
(2.10)

[pic] - риск портфеля.

Оптимальной для любого инвестора стратегией в этой модели оказывается инвестирование части средств в касательный портфель, а части – в безрисковые облигации. Либо наоборот: получение займа для дополнительного инвестирования в касательный портфель. Чем меньше будет доля средств, вложенных в рисковые активы по отношению к безрисковым, тем меньше будет величина риска.

Очевидно, что доходности ценных бумаг, обращающихся на рынке, можно рассматривать в зависимости от времени. При этом будут зависеть от времени числовые характеристики случайной величины rp. Так же, вообще говоря, будут зависеть от времени и значения параметров [pic] и [pic].

Модель финансового рынка называется равновесной, если числовые характеристики входящих в нее случайных величин постоянны во времени.
Экономический смысл подобного предположения очевиден: рынок считается
«устоявшимся», сбалансированным. В этом случае можно получить некоторые конкретные результаты, существенно упрощающие ситуацию.

Будем рассматривать модель зависимости доходности ценной бумаги от доходности касательного портфеля (предполагается, что безрисковая ставка получения и предоставления займов для всех участников рынка одна и та же и равна rf). Если модель равновесная, т.е. рынок сбалансированный, то касательный портфель удовлетворяет следующему свойству: доля каждой ценной бумаги в нем соответствует ее относительной рыночной стоимости. Такой портфель называется рыночным и определяется однозначно. Таким образом, рассматривая равновесные модели, мы будем отождествлять понятия касательного и рыночного портфеля, доходность которого обозначим rM.

Итак, регрессионная модель для i-й ценной бумаги имеет вид:

[pic] (2.11)

Оказывается, в равновесном случае имеет место следующая теорема( «для всех ценных бумаг, обращающихся на рынке, коэффициент [pic], один и тот же и равен безрисковой ставке».

Имеем [pic] (2.12)

Единственным параметром, характеризующим ценную бумагу, является ее чувствительность «бета» к рыночному портфелю.

Следующим методом является модель оценки финансовых активов (CAPM).

Уравнение [pic] называется рыночной линией ценной бумаги. Уравнение
[pic] называется уравнением модели оценки финансовых активов. Для ее использования необходимо получить оценки параметров касательного портфеля — ожидаемой доходности и риска, а также ковариаций доходностей ценных бумаг, входящих в р, с доходностью рыночного портфеля.

Практическое значение модели оценки финансовых активов заключается в том, что она может служить для выявления неверно оцененных бумаг в неравновесной ситуации, т.е. в ситуации несбалансированного рынка. Так, если доходность ной бумаги выше той, которая задается уравнением, то бумага является переоцененной, в противоположном случае — недооцененной.

Однофакторные модели во многих случаях являются вполне адекватными, однако чаще всего они оказываются слишком упрощенными и тогда приходится рассматривать зависимость доходности ценной бумаги от нескольких (т) факторов, т.е. линейные регрессионные модели вида:

[pic] (2.13)

Здесь [pic] и [pic]к – параметры, [pic] - факторы, определяющие состояние рынка (i – номер наблюдения).

Такими факторами могут быть, например, уровень инфляции, темпы прироста валового внутреннего продукта и др. Если данная ценная бумага относится к некоторому сектору экономики, то безусловно следует рассматривать факторы, специфические для данного сектора.

Следует стремиться к возможно меньшему количеству объясняющих переменных (факторов), поскольку кроме усложнения модели «лишние» факторы приводят к увеличению ошибок оценок.

В данной работе для простоты и в связи с устоявшимися стереотипами упростим определение (сузим понятие) рыночного риска, определив рыночный риск субъекта финансового рынка только как риск его потерь в условиях неопределенных (случайных) изменений рыночных факторов, оказывающих влияние на активы субъекта и/или портфель его активов и финансовых инструментов.
Тогда измерить рыночный риск - значит определить величину и вероятность суммарных возможных потерь за заданный период времени (период поддержания позиций).

В настоящее время в мире и России задача корректной количественной оценки рыночного риска приобретает чрезвычайно большое значение. Далее мы кратко рассмотрим современные способы решения этой проблемы.

Казалось бы, современная теория финансов дает ответ на вопрос, как измерить рыночный риск. Согласно этой теории, мера риска должна учитывать величину отклонения фактического результата от ожидаемого и вероятность реализации такого исхода. В классическом подходе Гарри Марковица к решению проблемы выбора структуры инвестиционного портфеля принимается, что доходность любого рискованного финансового инструмента или портфеля в целом является случайной переменной, распределение вероятностей изменений доходности - нормальным, а мерой степени неопределенности доходности портфеля - стандартное отклонение от ожидаемого (среднего) значения.
Инвестор основывает свое решение по выбору портфеля исключительно на ожидаемой доходности и стандартном отклонении. То есть для каждого портфеля инвестор должен оценить ожидаемую доходность за период владения и стандартное отклонение, а затем выбрать лучший вариант, основываясь на этих двух параметрах.

Однако в практике риск-менеджмента применение стандартного отклонения в качестве оценки риска имеет серьезные недостатки, из которых выделим два наиболее важных:

• во-первых, стандартное отклонение не дает корректной оценки риска, если распределение изменений рыночной стоимости (в дальнейшем - стоимости) портфеля инвестиций перестает быть нормальным (гауссовским) и симметричным;

• во-вторых, лица, принимающие решения по управлению портфелем, как правило, предпочитают получать информацию о риске в виде величины реальных денежных потерь, а не в форме стандартного отклонения.

Стандартное отклонение учитывает как благоприятные изменения стоимости портфеля, так и неблагоприятные. Если распределение изменений стоимости портфеля имеет симметричный вид, то стандартное отклонение определяет корректное значение риска. Асимметричность распределения изменений стоимости многих финансовых портфелей современных инвесторов объясняется включением в их состав опционов и подобных опционам инструментов, изменением стоимости которых относительно рыночных цен активов и обязательств является нелинейным.

Swap - своп, обмен: 1) своп на валютном рынке: покупка или продажа валюты на условиях "спот" (Spot) с одновременным заключением обратной форвардной сделки для покрытия валютных рисков; 2) в общем случае, своп - операция по обмену обязательствами или активами для улучшения их структуры, снижения рисков и издержек, получения прибыли.

Swaption - "свопцион": комбинация опциона и свопа в форме опциона на заключение операции своп на определенных условиях (например, взамен уплаты опционной премии).

Сар - "кэп" ("шапка") - фиксированный максимум процентной ставки в облигационном займе; это условие может отделяться от конкретной облигации и обращаться как самостоятельная ценная бумага.

Collar - "ошейник", "воротник": фиксированные максимум и минимум процентной ставки в облигационном займе; может быть отделен от облигации и обращаться как самостоятельная ценная бумага.

Collar Swap - обмен обязательств по фиксированной ставке на обязательства по плавающей ставке, причем последняя имеет максимум и минимум.

Floor Agreement - соглашение "пол" -серия опционов "пут" (Put) относительно ставки ЛИБОР (LIBOR = London Interbank Offered Rate), другой процентной ставки или серия опционов "колл" (Call) на базе фьючерсного контракта, защищающие покупателя от снижения процентных ставок (продавец возмещает разницу между текущей и более высокой фиксированной ценами).

Warrants (WTs) - варранты, т.е. условие облигационного займа в форме ценных бумаг, дающих право на покупку дополнительных облигаций или акций заемщика по фиксированной цене; могут. самостоятельно обращаться на рынке.

Начиная с 1970 годов на международных и национальных финансовых рынках многократно увеличились объемы операций, в связи с этим существенно усложнились структуры этих рынков и расширился перечень финансовых инструментов, предлагаемых участникам рынков. Многообразие финансовых инструментов явилось результатом адаптации рынков к разнообразным потребностям субъектов финансовых сделок, к минимизации трансакционных издержек, международных, транс- и внутринациональных рисков.

Инструментарий, применяемый в международной практике, весьма разнообразен: на валютных рынках - форвардные и фьючерсные контракты, валютные опционы, свопы (Swap), опционы на свопы (Swaption); на денежных рынках - процентные фьючерсы, опционы на фьючерсы, свопы, опционы на свопы, кэпы (Сар), коллары (Collar), свопы на коллары (Collar Swap), флоры (Floor) и опционы на них (Caption, Floortion, Collar-tion); на фондовых рынках
-фьючерсы и опционы не только на акции, но и на индексы, варранты
(Warrants) и т.п. Параметры, описывающие степень риска (например, волатильность), могут рассматриваться в качестве торгуемого индекса, явным образом указывая на степень риска.

Международные финансовые рынки особенно динамично развиваются в течение последних двух десятилетий в ответ на значительные изменения в мировой экономике и экономической политике. Увеличение объемов международной торговли, появление транснациональных корпораций и банков, либерализация и волна дерегулирований национальных рынков в развитых странах, мировая хозяйственная интеграция способствовали росту интенсивности массового движения капитала. Происходящее переплетение национальных и международных активов приводит к формированию единого универсального рынка капиталов, доступного всем субъектам независимо от их государственной и национальной принадлежности. Все эти события и факторы вызывают повышенный интерес к выбору методологии количественной оценки финансовых рисков. Одной из таких методологий оценки рыночных рисков, развивающихся параллельно с ростом и развитием финансовых рынков, стала методология Value-at-Risk.

2.2. VаR – модели оценки инвестиционных рисков

Для всесторонней (количественной и качественной) оценки рыночного риска в настоящее время в мире все активнее используется методология Value- at-Risk (VaR). Существует множество неточных переводов и понятий "Value-at-
Risk" типа "стоимость под риском", "стоимостная оценка (мера) риска" или даже "рисковая стоимость" и т.п., но, по мнению экспертов, подобные термины в научно-практической литературе следует использовать без перевода, используя латинские аббревиатуры и стараясь по возможности математически точно определять эти понятия с практическими иллюстрациями на примерах, применяя единую аббревиатуру. Тем не менее даже в англоязычной литературе для Value-at-Risk используются две аббревиатуры - VAR и VaR. Правильно применять последний вариант аббревиатуры, т.е. VaR, так как аббревиатура
VAR может иногда употребляться в одной и той же зарубежной статье для обозначения и Value-at-Risk и дисперсии (Variance). Латинская аббревиатура
VaR применяется на практике и в теории исключительно для обозначения Value- at-Risk, поэтому везде в данной работе только она и будет использоваться.

VaR - это вероятностно-статистический подход для определения соотношения ценовых показателей и риска, основным понятием в нем является распределение вероятностей, связывающее все возможные величины изменений рыночных факторов с их вероятностями.

Методология VaR стала особенно широко применяться в последние годы и сегодня используется в качестве единого унифицированного подхода к оценке риска международными банковскими и финансовыми организациями. Например,
Банк международных расчетов (BIS) применяет VaR в качестве основы при установлении нормативов величины собственного капитала относительно риска активов.

Кроме единства и относительной простоты подхода, главным и, видимо, самым веским аргументом в пользу концепции VaR является тот факт, что VaR стала общепризнанной методологией оценки риска среди зарубежных организаций и финансистов.

Сторонники данной концепции верят, что в конечном итоге VaR позволит на общем языке обсуждать проблемы оценки риска финансовым директорам, бухгалтерам, акционерам, управленцам, аудиторам и регулирующим органам всех стран. Методология VaR обладает рядом других несомненных преимуществ, так как позволяет:

- оценить риск в терминах возможных потерь, соотнесенных с вероятностями их возникновения;

- измерить риски на различных рынках универсальным образом;

- агрегировать риски отдельных позиций в единую величину для всего портфеля, учитывая при этом информацию о количестве позиций, волатильности на рынке и периоде поддержания позиций.

К другим важным достоинствам VaR относятся: простота и наглядность расчётов, консолидация информации, возможность сравнительного анализа потерь и соответствующих им рисков, а также то, что сам процесс оценки риска не менее важен, чем результат. VaR -своеобразный способ мышления и рассуждения о рисках.

К недостаткам VaR относятся сильные и слабые допущения о свойствах финансовых рынков, поведении экономических агентов на этих рынках, о виде и параметрах эмпирической функции распределения вероятностей, о чувствительности портфеля и ряд других.

При оценке VaR практически не учитывается ликвидность - важная характеристика всех рынков, особенно российских. Это может привести к тому, что в отдельные моменты изменение структуры портфеля для уменьшения риска может оказаться бесполезным.

Методология VaR применима на стабильных рынках и перестает адекватно отображать величину риска, когда на рынках происходят быстрые и/или резкие изменения. Если рыночные условия существенно меняются, например, скачкообразно изменяются цены, резко изменяется ликвидность рынка или корреляция между активами, то VaR учтет эти изменения через определенный промежуток времени, только накопив необходимую статистику событий и данных.
В течение же этого временного интервала любые оценки VaR будут некорректны.

С помощью VaR оценивается вероятность возникновения потерь больше определенного уровня, то есть оценивается "вес хвоста" распределения, поэтому дополнительно к VaR рекомендуется изучать поведение портфеля в стрессовых ситуациях (Stress-testing) и использовать сценарный подход
(Scenario Approach), чтобы оценить "длину хвоста" распределения.

К тому же VaR (как, впрочем, большинство известных методологий и методик) не дает абсолютной оценки возможных потерь, иногда VaR - "прогноз непрогнозируемых событий".

Однако VaR - действительно универсальный подход к оценке рыночных рисков, методология и элемент культуры современного риск-менеджмента.

Одна из главных целей разработки концепции VaR - одним единственным числом агрегировать и отобразить информацию о рыночных рисках портфеля, а также о рисках составляющих портфель сегментов и элементов.

Следует различать VaR как методологию, т.е. совокупность отдельных методов и методик оценки рыночного риска и числовые значения VaR для различных финансовых инструментов и всего портфеля в целом как суммы потенциально возможных потерь.

Теоретически рыночный риск может характеризоваться единственным параметром - VaR.

Например, при оценке валютных рисков открытых валютных позиций фирмы или коммерческого банка Value at Risk - выраженная в единицах базовой валюты суммарная оценка максимально возможных (с некоторой заданной вероятностью) убытков от воздействия того или иного рыночного фактора на открытую позицию по данному финансовому инструменту (впрочем, как и по портфелю в целом) в течение периода времени, необходимого для закрытия этой позиции.

Формализованно точное определение VaR портфеля активов (финансовых инструментов) часто формулируется следующим образом. Пусть портфель фиксирован (известна стоимостная структура портфеля: состав финансовых инструментов и их цены в момент времени t). VaR портфеля для заданного доверительного уровня и данного периода поддержания позиций (t определяется как такое значение V, которое обеспечивает покрытие максимально возможных потерь (Х держателя (владельца или менеджера) портфеля за временной период
(t с заданной вероятностью р, т. е. выполняется соотношение: Р((Х ( -V) = р.

С точки зрения теории вероятностей и математической статистики VaR соответствует р-квантилю заданного распределения. При этом VaR = V соответствует доверительному уровню (Confidence Level), равному 1 - p.

Проще говоря, VaR - статистическая оценка максимально возможных потерь данного портфеля финансовых инструментов при заданном распределении за определенный период времени во всех случаях, за исключением заранее заданного малого процента ситуаций.

Итак, VaR - величина максимально возможных потерь, такая, что потери в стоимости данного портфеля инвестора за определенный период времени с заданной вероятностью не превысят этой величины.

Таким образом, VaR дает вероятностную оценку потенциальных убытков по портфелю в течение определенного временного периода при экспертно заданном доверительном уровне. Доверительный уровень определяет вероятность наступления определенного события (например, 99% или 99,9%). Доверительный уровень часто соответствует доверительному уровню, используемому при расчете показателя отдачи на капитал RAROC (показатель «очищенной» от риска прибыли с капитала).

Доверительный уровень может устанавливаться не только в процентах, но и в среднеквадратических отклонениях (например, как в правиле "трех сигм" для гауссовского распределения вероятностей).

Временной горизонт определяет период, в течение которого осуществляется измерение риска потерь; он должен выбираться исходя из наличия статистических данных и характера проводимых операций в зависимости от продолжительности срока владения активами и ликвидности рынка.

В любом случае определение VaR подразумевает знание функции распределения доходности портфеля за выбранный интервал времени. Если стандартное отклонение как мера риска определяет "ширину" плотности распределения доходности портфеля, то VaR определяет конкретное значение потерь в стоимости портфеля, соответствующее заданному весу "хвоста" распределения.

Пример, поясняющий понятие и определение VaR, приведен на рис. 2.2.1.
По оси абсцисс отложены изменения цен ликвидации портфеля в течение определенного периода времени, по оси ординат - частота появления этих изменений. Кривая на рисунке задает плотность распределения вероятностей прибылей и потерь для данного портфеля (часто не гауссовского распределения) и заданного периода поддержания позиций. Заштрихованная светлым область соответствует выбранному доверительному уровню 1 - р =
98,5% в том смысле, что ее площадь составляет 98,5% от общей площади под кривой; соответственно площадь затемненной области слева составляет 1,5% от общей площади под кривой. Таким образом, VaR представляет собой величину суммарных возможных потерь, отвечающих заданному доверительному уровню.

[pic]

Рис.2.2.1.

Итак, для вычисления VaR необходимо определить ряд базовых элементов, непосредственно влияющих на его величину. В первую очередь это вероятностное распределение рыночных факторов, напрямую влияющих на изменения цен входящих в портфель активов. Понятно, что для его построения необходима некоторая статистика по поведению каждого из этих активов во времени. Если предположить, что логарифмы изменений цен активов подчиняются нормальному (гауссовскому) закону распределения с нулевым средним, то достаточно оценить только волатильность (здесь Volatility - среднеквадратическое отклонение приращения логарифма цены актива в единицу времени).

Однако на реальном российском финансовом рынке (впрочем, как и на многих зарубежных и международных рынках) предположение (гипотеза) о нормальности распределения, как правило, не выполняется.

После задания функций распределения рыночных факторов необходимо выбрать доверительный уровень, то есть вероятность, с которой наши потери не должны превышать VaR. Затем надо определить период поддержания позиций
(holding period), на котором оцениваются потери. При некоторых упрощающих предположениях легко показать, что значение VaR портфеля пропорционально квадратному корню из периода поддержания позиций. Поэтому при принятии этих предположений или их достоверности достаточно вычислять только однодневную величину VaR. Тогда, например, четырехдневное значение VaR будет в два раза больше, а 25-дневное - в пять раз.

Кроме того, если в портфеле содержатся сложные производные финансовые инструменты (например, опционы), надо выбрать функцию их ценообразования в зависимости от параметров рынка. Наконец, необходимо определить корреляционные связи между различными рыночными факторами и составить матрицу ковариаций. Последнее представляется весьма важным.

Следует, однако, помнить, что любая числовая мера степени неопределенности является ограниченной - лишь само реальное распределение дает исчерпывающую характеристику риска. Поэтому в качестве такой меры риска выбор той или иной функции и числовых характеристик распределения должен производиться с учетом особенностей конкретной задачи управления рисками. Так, например, принимая доверительный уровень, скажем, 99%, мы должны подумать о последствиях "остального" 1% -будет ли это не слишком большой проигрыш порядка одного стандартного отклонения, или что-то типа мировых кризисов октября 1987 года (тогда индекс Доу-Джонса упал более чем на 800 пунктов) или 1997 года, "черного вторника" или кризиса августа 1998 года в России. В последних случаях необходимо увеличить доверительный интервал, например, до 99,9%-99,99%.

И, наконец, для расчета VaR необходимо знать стоимостную структуру портфеля (состав и цены финансовых инструментов).

Получение релевантной информации о составе портфеля - непростая задача. Некоторые крупные корпорации, имеющие в своем портфеле тысячи торгуемых на различных рынках инструментов и ведущие активные финансовые операции, сталкиваются с проблемой оперативного получения информации о текущей структуре портфеля.

Другая проблема состоит в выборе времени фиксации цен активов, образующих портфель. Торговые сессии на мировых рынках заканчиваются в разное время, что создает проблему: по каким ценам считать изменение стоимости портфеля? Обычно время фиксации выбирается как время закрытия торгов на рынке, где сосредоточены основные активы компании.

Итак, после того как выявлены все базовые элементы, следует обратиться непосредственно к процедуре вычисления Value-at-Risk.

Существуют три основных метода вычисления VaR: аналитический метод
(иначе называемый вариационно-ковариационным методом, или методом ковариационных матриц), метод исторического моделирования (исторический метод, или метод исторических данных) и метод статистического моделирования
(метод статистических испытаний или, иначе, метод Монте-Карло).

Основная идея аналитического метода заключается в выявлении рыночных факторов, влияющих на стоимость портфеля, и аппроксимации стоимости портфеля на основе этих факторов. То есть финансовые инструменты, составляющие портфель, разбиваются, насколько это возможно, на элементарные активы, такие, что изменение каждого зависит только от воздействия одного рыночного фактора. Например, многолетняя купонная облигация может рассматриваться как набор бескупонных облигаций с разными сроками погашения.

Портфель раскладывается на базисные активы (компоненты), от которых зависит его текущая (современная) стоимость (Present Value).
Среднеквадратичное отклонение стоимости портфеля определяется среднеквадратическими отклонениями каждой из компонент и матрицей ковариаций. Наиболее известное воплощение этой модели - Risk-Metrics J.Р.
Morgan.

Этот метод требует только оценки параметров распределения при явном допущении о виде распределения рыночных факторов. Обычно делают предположение о нормальном законе распределения каждого рыночного фактора.
На основе данных прошлых периодов (далее исторических данных) вычисляются математические ожидания и дисперсии факторов, а также корреляции между ними. Если аппроксимация имеет линейный вид, то распределение доходности портфеля в целом также будет нормальным, и, зная параметры распределений рыночных факторов, можно определить параметры распределения всего портфеля.

Оценив стандартные отклонения логарифмов изменений цен для каждого из входящих в портфель активов, вычисляем VaR для них путем умножения стандартных отклонений на соответствующий доверительному уровню коэффициент. Полное вычисление VaR портфеля требует знания корреляционных связей между его элементами.

Аналитический метод может быть обобщен на портфель с произвольным числом различных активов - достаточно знать их волатильности и корреляции между ними. Волатильности важны при рассмотрении нелинейных инструментов.
Корреляции между различными активами особенно важны при рассмотрении сложных портфелей - именно корреляция определяет характер неттирования прибылей/убытков между различными инструментами.

Серьезное преимущество этого метода состоит в том, что для большинства рыночных факторов все необходимые параметры нормального распределения хорошо известны. Отметим также, что оценка риска в рамках методологии VaR, полученная с помощью аналитического метода, совпадает с оценкой риска, предлагаемой современной портфельной теорией.

Аналитический метод прост в реализации и позволяет относительно быстро
(возможно, даже в режиме реального времени) вычислять VaR практически на любых современных компьютерах. Но качество оценки ухудшается при увеличении в портфеле доли инструментов с нелинейными функциями выплат.

Кроме того, необходимость делать допущения о виде распределений для базовых активов является серьезным недостатком этого метода. Аналитический метод обладает также рядом не менее существенных недостатков. В частности, приходится опираться на весьма сомнительные гипотезы о нормальности распределения и стационарности нормального распределения, что делает метод мало пригодным для современных российских (и не только российских) условий.
Метод неприменим для портфелей, состоящих из инструментов, стоимость которых зависит от базисных активов нелинейным образом, например, для портфелей, содержащих нелинейные финансовые инструменты типа опционов и так называемых кредитных деривативов (Credit Derivatives).

Резюмируя все вышесказанное по аналитическому методу, можно выделить основные положительные и отрицательные стороны применения аналитического метода для расчета VaR. Преимущества( простота и наглядность расчетов( возможность расчета совокупной величины VaR для линейных инструментов( доступность методических материалов. Недостатки( допущение о нормальном распределении( невозможность расчета VaR для нелинейных инструментов.

Следующий метод, который используется при вычислении VaR, - это метод исторического моделирования. Этот метод заключается в исследовании изменений стоимости портфеля за предыдущий исторический период.
Исторические изменения стоимости активов используются для оценки изменения текущей стоимости портфеля. Определяются максимально возможные изменения стоимости портфеля для выбранного доверительного уровня.

Для вычисления VaR на определенный исторический период составляется база данных значений цен инструментов, входящих в портфель (или выделенных рыночных факторов, если портфель аппроксимируется). После этого надо вычислить изменения цен инструментов за промежуток времени, для которого рассчитывается VaR, и получить соответствующие значения изменений стоимости портфеля. Затем надо проранжировать полученные данные, построить гистограмму распределения изменений стоимости портфеля и найти значение
VaR, соответствующее выбранному значению вероятности.

Этот метод является непараметрическим и основан на весьма понятном предположении о неизменности развития и стационарности рынка в ближайшем будущем. Выбирается период времени (например, 100 торговых дней), за который отслеживаются относительные изменения цен всех входящих в сегодняшний портфель активов. Затем для каждого из этих изменений вычисляется, насколько изменилась бы цена сегодняшнего портфеля, после чего полученные 100 чисел сортируются по убыванию. Взятое с обратным знаком число, соответствующее выбранному доверительному уровню (например, для уровня 99% необходимо взять число с номером 99), и будет представлять собой эмпирическую оценку VaR портфеля.

У исторического метода есть безусловные преимущества - он не требует серьезных упрощающих предположений и способен улавливать весьма неординарные события на рынке. Важные преимущества данного метода состоят также в том, что он свободен от предположений о виде распределения рыночных факторов портфеля, прост в осуществлении. При его использовании не возникает проблем с оценкой портфеля, содержащих опционы и подобные им инструменты.

К недостаткам обсуждаемого метода следует отнести то, что он требует проведения большой работы по сбору исторических данных и их обработке.
Кроме того, оценка возможных изменений стоимости портфеля ограничена набором предыдущих исторических изменений. Типичная проблема при использовании данного метода состоит в отсутствии требуемого объема исторических данных. Чтобы получить более точную оценку VaR, необходимо использовать как можно больший объем данных, но использование слишком старых данных приводит к тому, что сегодняшний (и тем более будущий) риск будет оценен на основе данных, которые не соответствуют текущему состоянию рынка.

Таким образом, наиболее существенным недостатком исторического метода является его исключительная неустойчивость по отношению к выбору предыстории.

В самом деле, пусть портфель состоит только из одного фьючерса на доллар США. Пусть из доступных нам n дней периода предыстории в течение первых n/2 дней волатильность изменений цен фьючерса была равна 1%, а в течение последующих n/2 дней – в десять раз меньшее, чем при выборе всей доступной предыстории. Какое значение считать верным не понятно. Вопрос остается открытым, а ответ на него потребует дополнительных гипотез о текущем состоянии рынка.

Следующим на очереди является метод статистического моделирования
(иначе метод Монте-Карло), который основан на моделировании случайных процессов с заданными характеристиками. Данный метод заключается в моделировании возможных изменений стоимости портфеля при некоторых предположениях. Выявляются основные рыночные факторы, влияющие на стоимость портфеля. Затем строится совместное распределение этих факторов каким-либо способом, например, с использованием исторических данных или данных, основанных на каком-либо сценарии развития экономики. После этого моделируется большое число возможных сценариев развития ситуации, а изменение портфеля считается для каждого результата моделирования. Далее строится гистограмма полученных данных и определяется значение VaR.

Таким образом, изменения стоимости портфеля моделируются на основе выбранных статистических параметров отдельных активов, входящих в состав портфеля.

В отличие от исторического моделирования в методе Монте-Карло изменения цен активов генерируются псевдослучайным образом в соответствии с заданными параметрами. Имитируемое распределение может быть в принципе любым, а число сценариев весьма большим (от нескольких десятков до сотен тысяч). В остальном этот метод почти аналогичен методу исторического моделирования.

Метод Монте-Карло является наиболее точным и надежным при рассмотрении нелинейных инструментов. Этот метод имеет еще несколько важных преимуществ.
Он не использует конкретную модель определения параметров и может быть легко перенастроен в соответствии с экономическим прогнозом. Метод моделирует не конечную стоимость портфеля, а целые сценарии развития ситуаций, что позволяет отслеживать изменение стоимости портфеля в зависимости от пути развития ситуации.

Недостатки метода Монте-Карло – его медленная сходимость (это приводит к существенным затратам времени и вычислительных мощностей), сложность и трудоемкость расчетов.

Итак, метод Монте-Карло отличается высокой точностью и надежностью, пригоден практически для любых портфелей, но его применение требует качественной математической подготовки специалистов и достаточных компьютерных ресурсов для сложных вычислений.

Выбор одного из методов определения VaR зависит, прежде всего, от структуры портфеля, временных ограничений и технических возможностей, а также многих других условий и обстоятельств.

Поэтому, вообще говоря, сложно рекомендовать тот или иной метод вычисления VaR. Выбирая, какому из них отдать предпочтение, необходимо учитывать макро- и микроэкономическую ситуации, а также стратегические и тактические цели и задачи конкретной организации.

Конкретные модели расчетов VaR могут быть основаны на комбинации изложенных выше методов и их модификаций.

Выделим основные моменты данной главы, на которые нужно обратить внимание. Ожидаемая доходность служит мерой потенциального вознаграждения, связанного с портфелем. Стандартное отклонение рассматривается как мера риска портфеля. Ожидаемая доходность портфеля является средневзвешенной ожидаемой доходностью ценных бумаг, входящих в портфель. В качестве весов служат относительные пропорции ценных бумаг, входящих в портфель.
Ковариация и корреляция измеряют степень согласованности изменений значений двух случайных переменных.

Одной из распространенных моделей по оценке рисков является VaR модель. VaR – величина максимально возможных потерь, такая, что потери в стоимости данного портфеля инвестора за определенный период времени с заданной вероятностью не превысят этой величины. Таким образом, VaR дает вероятностную оценку потенциальных убытков по портфелю в течение определенного периода при экспертно заданном доверительном уровне.

3. Разработка и реализация мер по управлению инвестиционными рисками.

3.1. Управление инвестиционными рисками в коммерческом банке

Для рынка долговых инструментов присущи свои особенности определения основных направлений и методов управления рисками.

Деятельность по управлению рисками связана с решением следующих задач:

. выявление рисков, присущих операциям на рынке корпоративных облигаций(

. проведение количественной оценки возможных потерь, связанных с реализацией этих рисков(

. определение предельно допустимого уровня финансовых потерь по операциям с корпоративными облигациями(

. ограничение возможных потерь от реализации рисков на уровне не выше предельно допустимого, путем установления комплексной системы ограничений (лимитов) на операции с корпоративными облигациями.

Конечной целью деятельности по управлению рисками является максимизация экономической эффективности, при поддержании сопутствующих рисков на уровне не выше, чем предельно допустимый.

В портфельном инвестировании при расчетах лимитов по операциям с облигациями за основу выбираются ряд рисков.

Статический риск - риск, связанный с возможностью неисполнения контрагентом своих обязательств. Статический риск включает в себя кредитный риск неисполнения эмитентом своих обязательств по выпущенным долговым обязательствам и риск неисполнения контрагентом своих обязательств по поставке оплаченных банком ценных бумаг или по оплате поставленных ему банком ценных бумаг.

Динамический риск - риск, связанный с возможным неблагоприятным изменением рыночной конъюнктуры. Динамический риск включает в себя риск неблагоприятного изменения процентных ставок на рынке, следствием которого являются негативные изменения в доходности портфеля, а так же риск падения ликвидности рынка, следствием которого является невозможность реализации облигаций портфеля без существенных потерь.

Исходя из текущих условий деятельности на рынке облигаций и политики
Банка, проводимой по отношению к этим операциям и управлению рисками, устанавливаются следующие нормативы чувствительности к риску.

Неприемлемый риск - величина убытков, неприемлемая с точки зрения функционирования банка в целом. Устанавливается в абсолютной сумме руководством Банка.

Предельно допустимый риск - величина убытков, приводящая к необходимости возмещения их части трейдерами в расчете на величину общего лимита средств, выделяемых на операции с облигациями. Норматив устанавливается в инвестиционных ориентирах в соответствии с решением правления Банка. В абсолютной сумме он рассчитывается как максимальный процент убытков, превышение которого влечет за собой необходимость возмещения, умноженный на величину общего лимита средств, выделяемых на операции с корпоративными облигациями, и деленный на сто процентов.

Максимально приемлемый риск - величина убытков, равная глобальному стоп-лоссу, установленному в Положение об инвестиционной политике и портфельном управлении для сектора облигаций в расчете на величину общего лимита средств, выделяемых на операции с облигациями.

Для того, чтобы трейдер имел более детальную картину о состоянии своего портфеля, нужно произвести количественную оценку возможных потерь, связанных с данными рисками.

Оценка статического риска производится на основе кредитного анализа эмитента или контрагента, а также статистической вероятности неисполнения своих обязательств эмитентом, обладающим данным уровнем кредитного качества.

Величина статического риска по конкретной открытой позиции будет равна произведению суммы открытой позиции на вероятность неисполнения эмитентом или контрагентом своих обязательств.

Величина общего статического риска портфеля будет равна сумме статического риска по всем открытым позициям.

Оценка динамического риска производится на основе исторических данных о ценах и ликвидности рыночных инструментов и прогнозе экономической ситуации на анализируемый период.

Величина динамического риска изменения процентных ставок равна максимально возможному негативному изменению стоимости инструмента в прогнозируемой на период экономической ситуации. Величина риска, определяемая этим методом не должна превышать величину потерь, определенную в качестве предельно допустимой, глобальным стоп-лоссом в расчете на данную конкретную позицию. Динамический риск процентных ставок рассчитывается на планируемый период владения бумагой. Величина динамического риска ликвидности равна: для торгуемых бумаг - сумме превышения величины открытой позиции над среднедневным биржевым оборотом по данному инструменту за три последних месяца (по номиналу), умноженной на вероятность неисполнения эмитентом своих обязательств; для бумаг, взятых на первичном размещении, риск ликвидности рассчитывается аналогично, но за среднедневной оборот берется среднедневной оборот по наиболее схожему по своим характеристикам инструменту, который уже обращается на вторичном рынке.

Страницы: 1, 2, 3


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ