Рефераты

Управление инвестиционными рисками

p> С целью ограничения величины статического и динамического риска, как по портфелю в целом, так и по отдельным отраслям и эмитентам на операции с облигациями устанавливаются лимиты.

Базовый кредитный лимит рассчитывается на основе анализа кредитного качества заемщика и вероятности дефолта, соответствующей этому кредитному качеству. Расчет данного лимита больше подходит для облигаций корпоративного сектора. Величина статического риска у государственных бумаг очень мала и практически не участвует в расчетах, за исключением муниципальных облигаций.

Базовый кредитный лимит определяется таким образом, чтобы общая величина статического риска соответствующая открытой позиции на всю сумму лимита не превышала величины максимально приемлемого риска. Величина базового кредитного лимита определяется как сумма максимально приемлемого риска, деленная на вероятность дефолта данного конкретного заемщика. При этом, дефолт трактуется в соответствии с определением рейтинговых агентств
Moody's или S&P.

Вероятность дефолта определяется: для предприятий имеющих общепризнанный кредитный рейтинг, - как процент предприятий, имевших соответствующий рейтинг и объявивших дефолт в тот же срок от получения рейтинга, что и анализируемое предприятие плюс один год, среди всех предприятий, получивших этот же рейтинг в соответствующий период.
Информация берется из публикаций Moody's или S&P. При осуществлении инвестиций со сроком «до погашения», в качестве периода, для определения вероятности дефолта, берется срок от получения рейтинга плюс срок оставшийся до погашения. При наличии прогноза по рейтингу
(позитивный/негативный) вероятность дефолта может использоваться соответствующая рейтингу на ступень выше или ниже, чем та, которая присвоена предприятию, но только если оценка прочих рисков подтверждает прогноз изменения рейтинга.

Для предприятий, не имеющих общепризнанного кредитного рейтинга, вероятность дефолта оценивается на основе сравнения показателей финансового положения, кредитной истории, качества менеджмента, доли рынка и прочих существенных показателей анализируемого предприятия, с показателями наиболее близкого по характеру деятельности предприятия, которое имеет общепризнанный кредитный рейтинг в заданный период. При этом, вероятность дефолта берется не ниже, чем вероятность дефолта за соответствующий период соответствующая самому низкому кредитному рейтингу по классификации Moody's или S&P. Для всех предприятий, независимо от того, имеют ли они общепризнанный кредитный рейтинг или нет, в обязательном порядке проводится анализ кредитного качества по методике Банка «Зенит» или любой другой аналогичной методике, или, в случае нахождения таковой, - более совершенной. При этом вероятность дефолта самого надежного заемщика, вне зависимости от того, какой кредитный рейтинг имеет данный заемщик, и какова соответствующая ему вероятность дефолта, обязательно берется не ниже чем
0,01.

Скорректированный базовый кредитный лимит определяется путем уменьшения, в случае необходимости, величины базового кредитного лимита для того, чтобы учесть размер компании - эмитента и совокупный объем выпуска всех эмиссий облигаций данного эмитента, обращающихся на открытом рынке.
Скорректированный базовый кредитный лимит определяется как базовый кредитный лимит, уменьшенный до величины чистого денежного потока компании за год и затем уменьшенный до величины, не превышающей 3% от совокупного объема выпуска всех эмиссий облигаций данного эмитента, обращающихся на открытом рынке.

На заседание правления банка для последующего утверждения выносится скорректированный базовый кредитный лимит.

Текущими лимитами ограничивается общий совокупный риск портфеля корпоративных облигаций, общий совокупный риск вложений в каждую отдельную отрасль и совокупный риск по каждой открытой позиции.

Глобальный объемный лимит по риску портфеля устанавливается таким образом, чтобы сумма статического и динамического риска по всем позициям портфеля корпоративных облигаций не превышала величины неприемлемого риска.

Объемный лимит вложений в одну отрасль равен сумме статического и динамического риска по всем вложениям в одну отрасль не должна превышать величины предельно допустимого риска.

Текущий лимит на открытую позицию рассчитывается как сумма статического и динамического риска по каждой отдельной открытой позиции не должна превышать величины максимально приемлемого риска.

Текущие лимиты не выносятся на обсуждение заседания правления банка, а контроль за их соблюдением осуществляется начальником подразделения и сотрудником, отвечающим за аналитическую работу по операциям с корпоративными облигациями.

Чтобы избежать непредвиденных потерь по портфелю, нужно проводить оперативный контроль за рисками и соблюдением лимитов.

Предварительно, перед каждым новым открытием позиции, осуществляются расчеты рисков. Риски определяются как в отдельности - по новой позиции, так и, с учетом ранее открытых позиций, по отрасли и по портфелю в целом.

По результатам расчетов, определяется значение текущего лимита на новую позицию. При этом, открытие позиции на всю сумму текущего лимита не должно привести к нарушению отраслевого и глобального объемных лимитов.

При покупке инструментов на первичном рынке, допускается открывать позицию на всю сумму скорректированного базового кредитного лимита, без учета динамического риска, однако при появлении вторичного рынка по бумаге и данных для расчетов динамического риска, размер позиции должен быть уменьшен, в случае необходимости, до величины текущего кредитного лимита.

Отчет по рискам портфеля составляется одновременно с месячным прогнозом развития ситуации на рынке корпоративных облигаций.

В случае, если по результатам пересмотра, один или несколько лимитов оказываются нарушенными, в портфель следует внести соответствующие коррективы.

Бывают такие ситуации, что в портфелях находятся ценные бумаги, эмитенты которых не имеют кредитного рейтинга, и иногда бывает сложно определить по параметрам облигации какова степень статического риска у данного заемщика.

После августовского кризиса 1998 года российский рынок ценных бумаг пережил ряд потрясений, связанных с неспособностью либо нежеланием заемщиков исполнять свои обязательства по облигациям и кредитам. В результате риск дефолта стал одним из наиболее важных факторов, принимаемых во внимание при оценке долговых ценных бумаг. Традиционной мерой такого риска является превышение уровня доходности к погашению над безрисковой процентной ставкой. Мы предлагаем альтернативный подход, который позволяет математически определить предполагаемую вероятность дефолта по долговым финансовым инструментам, которая является мерой риска дефолта как на развивающихся, так и на развитых рынках. Этот показатель играет весьма важную роль во внутрибанковском планировании.

Трейдеры по ценным бумагам могут использовать этот показатель в частности для торговли относительной стоимостью (ценные бумаги сходного кредитного качества должны иметь близкие значения вероятности дефолта).

Во внутри банковском планировании, например при приведении стоимости фондирования разных направлений бизнеса внутри банка к безрисковым ставкам, а также для расчетов стоимости хеджирования кредитных рисков, коммерческие банки пользуются этим подходом.

Умножая данный показатель на стоимость актива, можно теоретически определить стоимость хеджирования или в случае кредитования клиента банком размер компенсации за дополнительный риск.

Для расчета предполагаемой вероятности дефолта предположим, что вероятность его наступления в период между любыми двумя последовательными платежами не зависит от срока до погашения ценной бумаги. Такой подход аналогичен тому, который используется при расчете доходности к погашению по облигациям, когда при расчете приведенной стоимости будущих платежей в качестве ставки дисконтирования используется одна и та же процентная ставка
— доходность к погашению, рассчитываемая по формуле:

Bond рriсе = [pic]( (3.1) где YTM — доходность к погашению; [pic]Сi[pic], — платеж по облигации в момент времени Тi; YTM = r + Risk Premium, где r — безрисковая процентная ставка.

Для расчета приведенной стоимости будущих платежей в качестве ставки дисконтирования будет использоваться безрисковая процентная ставка, так как весь риск будет заложен в оценке вероятных платежей.

Пусть Р — вероятность наступления дефолта в период между любыми двумя последовательными платежами. Тогда вероятность того, что дефолт не наступит в первый период выплаты по ценной бумаге, равна (1 - Р), а в i-й период — произведению вероятностей ненаступления дефолта во все предыдущие периоды и
(1 - Р), т. е. [pic](1 – P)[pic].

Аналогично вероятность того, что дефолт наступит именно в i-й период, равна (1 - Р)[pic]Р.

В случае если дефолт не наступает, держатель ценной бумаги получает платеж Сi( а в случае дефолта — остаточную стоимость ценной бумаги RV.

Таким образом, с учетом риска наступления дефолта инвестор может рассчитывать на получение i-го платежа в размере

(1 - Р)[pic]Сi,- + (1 – P)[pic]P*RV.

При этом текущая приведенная стоимость PV, такого платежа будет равна

PVi = [(1 - Р)[pic]С[pic] + (1 - P)[pic]P*RV]/(1 + r)[pic](

(3.2) где r — безрисковая доходность (для долларовых облигаций — доходность по US Treasuries или местному инструменту с минимальным риском дефолта).

РРыночная стоимость ценных бумаг равна сумме приведенных стоимостей всех платежей, таким образом, зная рыночную цену, можно рассчитать предполагаемую вероятность дефолта:

Bond price = [pic]. (3.3)

Такое распределение вероятности описывается экспоненциальной зависимостью: D(T) = 1 – е[pic] — функция распределения вероятности дефолта в течение срока, где р — плотность распределения вероятности дефолта.

Вероятность Р может быть выражена следующим образом:

Р = 1 - е[pic].

(3.4)

Отметим, что для большинства ценных бумаг (Тi - Т[pic]) величина постоянная, т. е. величина Р не зависит от срока до погашения.

Формула для приведенной стоимости ценной бумаги может быть сведена к следующей:

Bond price = [pic]( (3.5) и задача сводится к нахождению р. Таким образом, зная величину, можно определить годовую вероятность дефолта по формуле D = 1 - e[pic]. D(T) — вероятность наступления дефолта в течение срока Т, где р — плотность распределения вероятности дефолта (в нашем предположении р не зависит от времени). dD(t) = (1 - D(t))pdt — приращение функции распределения вероятности дефолта при приращении времени на dt. d(l -
D(t))/(l - D(t)) = -pdt. Отсюда D(t) = 1 – e[pic]. Вероятность ненаступления дефолта в течение срока Тi равна произведению вероятности ненаступления дефолта в срок Т[pic] на (1 - Р), т. е. е[pic](1 - Р) = е[pic]. Отсюда P = 1 - e[pic].

Приведенная выше модель может быть использована инвесторами и трейдерами для сравнения ценных бумаг сходного кредитного качества.

Например, при уровне остаточной стоимости 12% от номинальной стоимости предполагаемая годовая вероятность дефолта по российским еврооблигациям в начале марта составляла 9 — 11%.

В то же время по ОВГВЗ составляет от 11% (по 7-му траншу) до 25% (по 4- му траншу), что говорит о несоответствии оценки ценных бумаг участниками рынка и агентством Standard & Poor's, которое недавно уравняло рейтинги
ОВГВЗ и еврооблигаций на уровне ССС+.

Коммерческими банками такая модель может быть использована для расчета маржи над безрисковой процентной ставкой для заемщиков с различным рейтингом.

Рассмотрим ситуацию, когда в банке существует система внутренних рейтингов заемщиков и некоторые кредиты имеют частичное покрытие, которое может рассматриваться как остаточная стоимость в случае неисполнения заемщиком своих обязательств.

Предполагается выдать кредит заемщику с рейтингом, предполагающим 10%- ю вероятность неисполнения обязательств. Кредит подлежит погашению через год с выплатой половины суммы через полгода и оставшейся суммы через год.

Если безрисковая ставка в данной валюте составляет 15%, а остаточная стоимость 20% от суммы кредита, то согласно приведенной модели процентная ставка должна составлять 23,85%.

В случае изменения рейтинга заемщика (оценки вероятности неисполнения обязательств) с помощью этой же модели можно переоценить стоимость кредита.
Например, если через 3 месяца после выдачи кредита рейтинг заемщика предполагает вероятность неисполнения обязательств 15%, а остаточная стоимость оценивается в 10%, то стоимость такого кредита будет составлять
97,3%.

Рассмотрим еще один пример, где применяется данная модель. Компания обращается в банк за возобновлением кредита. С момента подачи последней заявки кредитоспособность компании, по мнению банка, упала и риск кредитования возрос, по крайней мере, на 10 процентных пунктов, до 20%.

По сравнению с предыдущим разом в случае продажи займа на рынке вы получили бы только 90 центов/долл. При той же оценке уровня остаточной стоимости изложенная выше методология предлагает вам повысить ставку займа на 10,4 процентных пунктов, с 23,85 до 34,25%.

Таким образом, модель оценки вероятности дефолта может быть инструментом оценки рыночной стоимости существующих долгов, а также механизмом определения процентных ставок по кредитам с учетом риска заемщика.

Для трейдеров наряду с доходностью к погашению данная модель может служить удобным инструментом для сравнения привлекательности облигаций различных эмитентов, позволяя численно определить уровень риска дефолта.

Для коммерческих банков применение данной методологии осложнено российскими реалиями, например:

• дифференциацией отношений компаний с кредиторами: одним платят, другим нет;

• отсутствием внутрироссийских рейтингов компаний и др.

Тем не менее внутри банков рейтинги заемщиков должны существовать, поэтому некоторые элементы предложенного подхода могут быть использованы как элементы в создании внутрибанковских методик оценки рисков.

Рассмотрим как производится оценка доходности и риска ценных бумаг с фиксированным доходом, в частности векселей и облигаций.

Сейчас трудно найти работу, в которой бы проводился вероятностный анализ доходности и риска долговых обязательств. Скорее всего, это связано с тем, что доходность такого рода бумаг не лежит в произвольно широких пределах, как это имеет место для акций и паев взаимных фондов на акциях.
Моделируя ценные бумаги с фиксированным доходом, мы знаем параметры выпуска
(дата выпуска, цена размещения, дата погашения, число купонов, их размер и периодичность). Единственное, чего мы не знаем, - это то, как будет изменяться котировка этих бумаг на рынке в зависимости от текущей стоимости заемного капитала, которая косвенно может быть оценена уровнем федеральной процентной ставки страны, где осуществляются заимствования.

Идея вероятностного анализа долговых обязательств, представленная здесь, состоит в том, чтобы отслоить от истории сделок с долговыми обязательствами неслучайную составляющую цены (тренд). Тогда оставшаяся случайная составляющая (шум) цены может рассматриваться нами как случайный процесс с непрерывным временем, в сечении которого лежит нормально распределенная случайная величина с нулевым средним значением и со среднеквадратичным отклонением (СКО), равным ((t), где t – время наблюдения случайного процесса. Ожидаемый вид функции ((t) будет исследован нами позже.

Получим аналитический вид трендов долговых обязательств и для начала рассмотрим простейшие случаи таких выражений, которые имеют место для дисконтных бескупонных облигаций и дисконтных векселей.

Пусть бумага данного вида эмитирована в момент времени TI по цене N0 N, где N – номинал ценной бумаги. Тогда разница N – N0 составляет дисконт по бумаге. Параметрами выпуска также определен срок погашения бумаги TM, когда владельцу бумаги возмещается ее номинал в денежном выражении.

Пусть t – момент времени, когда инвестор собирается приобрести бумагу.
Определим ее справедливую рыночную цену С(t). Это выражение и является трендом для случайного процесса цены бумаги.

Пусть время в модели дискретно, а интервал дискретизации - год.
Бумага выпускается в обращение в начале первого года, а гасится в конце n
– го. Тогда рыночная цена дисконтного инструмента, приобретаемого в начале
(k+1) – го года обращения бумаги, имеет вид:

[pic] (3.6) где r – внутренняя норма доходности долгового инструмента, определяемая по формуле:

[pic] (3.7)

Формула (3.6) предполагает, что на рынке имеются бумаги с той же самой внутренней нормой доходности, что и наша, которые при этом имеют реинвестируемые купонные платежи, а период реинвестирования равен одному году. Если бы не так, то расчет следовало бы вести по формуле, предполагающей, что период реинвестирования платежей совпадает с периодом обращения дисконтного инструмента.

Получим аналоги формул (3.6) и (3.7) для непрерывного времени, предполагая по ходу, что реинвестирование также идет в непрерывном времени с периодом бесконечно малой длительности. Это делается следующим образом.
Разобъем весь период обращения ценной бумаги [TI, TM] на интервалы числом n и длительностью

[pic] (3.8)

Обозначим t = TI + k * ( и применим к расчету рыночной цены бумаги формулы (3.6) и (3.7). Это дает:

[pic], (3.9)

[pic] (3.10)

Предельный переход в (3.9) и (3.10) при ( ( 0 дает:

[pic] (3.11)

[pic] (3.12)

Рис. 3.1.1. Функция справедливой цены дисконтной облигации

Это и есть соотношение для справедливой цены дисконтной бумаги для непрерывного времени. Качественный вид функции (3.10) представлен на рис.
3.1.1.

Сделаем предположение о характере шума цены. Для этого построим частную производную цены по показателю внутренней нормы доходности бумаги:

[pic] (3.13)

Видно, что чувствительность цены к колебаниям процентной ставки имеет нестационарный вид и убывает до нуля по мере приближения срока погашения бумаги. Таким образом, резонно искать среднеквадратичное отклонение (СКО) шума как функцию вида:

[pic] (3.14)

Ожидаемый вид СКО представлен на рис. 3.1.2.

С практической точки зрения это означает следующее. Мы наблюдаем случайный процесс цен на бумаги, который можно обозначить H(t). Тогда шум процесса имеет вид

[pic] (3.15) где C(t) – тренд цены - определяется по (6.6).

Рис. 3.1.2. Ожидаемый вид функции СКО

Перейдем от нестационарного шума к стационарному введением корректирующего делителя

[pic]. (3.16)

Тогда процесс (*(t) является стационарным, и в его сечении находится случайная величина с матожиданием 0 и с СКО (0. И определение фактического значения параметра (0 этого процесса может производиться стандартными методами.

Теперь посмотрим, что делается со случайной величиной доходности долгового инструмента, в процентах годовых:

[pic] (3.17) где Т - период владения долговым инструментом.

Заметим здесь, что рыночная цена H(t), измеренная в момент t, не рассматривается нами как случайная величина, так как ее значение в этот момент известно. Эта же цена неизвестна в будущем времени (t + T) и является случайной величиной, которая имеет нормальное распределение с матожиданием С(t + T) и СКО ( (t + T) (эти функции вычисляются по формулам
(3.11) и (3.14)).

Cлучайный процесс доходности на интервале [t, t+T] в сечении имеет параметры:

[pic] (3.18)

[pic] (3.19)

Рассмотрим пример анализа доходности дисконтной облигации.

Облигация номиналом N = 1000$ выпускается в обращение в момент времени TI = 0 (далее все измерения времени идут в годах) сроком на 2 года c дисконтом 30%, то есть по эмиссионной цене N0 = 700$. Инвестор намеревается приобрести бумагу в момент времени t =1. В этот момент текущая цена бумаги на рынке составляет H(1) = 820$. Для проведения статистического анализа доступна история сделок с бумагой за истекший год ее обращения. Требуется идентифицировать доходность облигации R(t=1, T) на протяжении оставшегося года владения ( T ( [0, 1] ) как случайный процесс и определить параметры этого процесса.

Согласно (3.11), (3.12), внутренняя норма доходности нашей облигации составляет r = ln(1000/700) = 35.67% годовых, (3.20) а справедливая цена

С(t) = 1000*exp(-(2-t)*0.3567/2), t ( [0, 2]. (3.21)

Далее следует этап анализа истории цены за истекший год. СКО шума цены, согласно (3.14), имеет вид

[pic] (3.22) где (0 определяется на основе анализа истории скорректированного шума цены вида (3.16).

Теперь бумага полностью идентифицирована. Случайный процесс ее доходности имеет параметры, которые определяются по формулам (3.18),
(3.19). В частности, на момент погашения бумаги Т = 1, C(2) = 1000$, ((1+1)
= 0, ((1+1) = 0, и R(1,1) = (1000-820)/(820*1) = 21.95% годовых – неслучайная величина.

Оценим процесс количественно через Т = 0.5 лет владения бумагой, задавшись параметром СКО шума (0 = 20$. Тогда

C(1.5) = 1000*exp(-(2-1.5)*0.3567/2) = 914.7$, (3.23)

[pic] (3.24)

[pic] (3.25)

[pic] (3.26)

Пусть бумага данного вида эмиттирована в момент времени TI по цене N0, причем эта цена может быть как выше, так и ниже номинала (это обусловлено соотношением объявленной купонной ставки и среднерыночной ставки заимствования, с учетом периодичности платежей). Обозначим размер купона
(N, а число равномерных купонных выплат длительностью (( за период обращения обозначим за K, причем для общности установим, что платеж по последнему купону совпадает с моментом погашения бумаги.

Тогда временная последовательность купонных платежей может быть отображена вектором на оси времени с координатами

[pic] (3.27)

Формула для справедливой цены процентного долгового инструмента имеет вид:

[pic] (3.28) где [pic] - (3.29) номер интервала, которому принадлежит рассматриваемый момент t,

[pic] (3.30)

[pic], (3.31) моменты (i определяются соотношением (3.27), а внутренняя норма доходности долгового инструмента r отыскивается как корень трансцендентного уравнения вида

С(TI) = N0. (3.32)

Если купон по процентной бумаге нулевой, то переходим к рассмотренному выше случаю дисконтной бумаги.

Анализ соотношений (3.30) и (3.31) показывает, что шум цены, тренд которой имеет вид (3.28), является нелинейно затухающей кусочной функцией на каждом интервале накопления купонного дохода, причем шум получает как бы две составляющих: глобальную – для всего периода обращения бумаги, и локальную – на соответствующем моменту t интервале накопления купонного дохода.

Исследуем характер шума цены процентной бумаги:

[pic] (3.33) где C(t) – тренд цены - определяется по (3.28).

Руководствуясь соображениями, изложенными в предыдущем примере дисконтных бумаг, будем отыскивать СКО шума цены в виде:

[pic] [pic] (3.34) где [pic]

(3.35) а i определяется по (3.29). Соотношение (3.35) является частной производной справедливой цены (3.28) по показателю внутренней нормы доходности бумаги с точностью до постоянного множителя.

Аналогично предыдущему примеру, мы можем получить нормировочный делитель для шума цены процентной бумаги. Переход от нестационарного шума к стационарному будет иметь вид:

[pic], (3.36) где [pic]определяется по (3.35). При уменьшении величины купона до нуля соотношение (3.34) переходит в (3.14), что косвенно подтверждает правоту наших выкладок.

На рис. 3.1.3 приведен примерный вид тренда цены процентной бумаги, а на рис. 3.1.4 – примерный вид СКО такой бумаги.

Рис. 3.1.3. Функция справедливой цены процентной бумаги

Рис. 3.1.4. Функция СКО процентной бумаги

Что касается доходности процентных инструментов, то формулы (3.17) –
(3.18) получают поправку в виде проплаченного за время Т купонного дохода:

[pic] (3.37) где m – число оплаченных купонов процентной бумаги за период T.

Вывод о том, что случайный процесс [pic]имеет в своем сечении нормальную величину, сохраняется без изменений. Параметры этой случайной величины:

[pic] (3.38)

[pic] (3.39)

Рассмотрим расчетный пример.

Облигация номиналом N = 1000$ выпускается в обращение в момент времени TI = 0 (далее все измерения времени идут в годах) сроком на 3 года c дисконтом 10%, то есть по эмиссионной цене N0 = 900$. По бумаге объявлено три годовых купона по ставке 20% годовых, то есть размером (N =
200$. Инвестор намеревается приобрести бумагу в момент времени t =1 сразу после первого купонного платежа. В этот момент текущая цена бумаги на рынке составляет H(1) = 940$. Для проведения статистического анализа доступна история сделок с бумагой за истекший год ее обращения. Требуется идентифицировать доходность облигации R(t=1, T) на протяжении оставшихся двух лет владения ( T ( [0, 2] ) как случайный процесс и определить параметры этого процесса.

Определим внутреннюю норму доходности нашей процентной бумаги, итеративно решив уравнение (3.32). Тогда, согласно (3.28), это уравнение приобретает вид:

(1000 + 200) * exp(-r) + 200*(exp(-r/3) + exp(-2r/3)) = 900,
(3.40) откуда методом итераций получаем r = 67.2% годовых.

Выражение для справедливой цены приобретает вид:

[pic] (3.41)

Далее следует этап анализа истории цены за истекший год. СКО шума цены, согласно (3.34) – (3.35), имеет вид

[pic] (3.42) где

[pic](3.43) а (0 определяется на основе анализа истории скорректированного шума цены вида (3.36).

Теперь бумага полностью идентифицирована. Случайный процесс ее доходности имеет параметры, которые определяются по формулам (3.18),
(3.19). В частности, на момент погашения бумаги Т = 2, C(3) = 1200$, ((1+2)
= 0, ((1+2) = 0, и R(1,2) = (1200-940)/(940*2) = 13.83% годовых – неслучайная величина.

Оценим процесс количественно через Т = 1 год владения бумагой непосредственно перед получением дохода по второму купону, задавшись параметром СКО шума (0 = 20$. Тогда

C(2-0) = 1200*exp(-(3-2)*0.672/3) + 200 = 1159.2$, (3.44)

[pic], (3.45)

[pic] (3.46)

[pic] (3.47)

Обладая квазистатистикой ценового поведения облигации, мы можем оценить СКО шума цены (3.14) и (3.34) как треугольную нечеткую функцию фактора времени. И все соответствующие вероятностные распределения приобретают вид нечетких функций, а случайные процессы приобретают постоянные нечеткие параметры.

Мы получили вероятностную интерпретацию цены долгового инструмента. Зная матожидание и дисперсию цены, мы можем оценивать то же для текущей доходности. И тогда мы можем решать задачу Марковица, отыскивая максимум доходности портфеля при фиксированном СКО портфеля.

Если квазистатистики по отдельной долговой бумаге нет, можно воспользоваться статистикой квазистатистикой ведущих индексов по долговым обязательствам (например, индексами доходности по 10-летним или 30-летним государственным долговым обязательствам, анализируемыми в пределах последнего года). Параметры случайных процессов для этих индексов могут быть взяты за основу при моделировании ценовых случайных процессов для индивидуальных долговых обязательств, при этом мера уверенности эксперта в оценке параметров будет находиться в обратной зависимости от ширины расчетного коридора, формируемого соответствующими нечеткими числами и вероятностными распределениями с нечеткими параметрами.

3.2. Хеджирование как метод страхования рисков

Стремление финансиста избежать риска и обеспечить себе гарантированную доходность вложенного капитала побуждает его к такой организации портфеля активов, при которой получается минимально возможный разброс эффективностей относительно приемлемого для него значения. Эта проблема близка по содержанию еще одной, практически важной, задаче составления такого портфеля, доход от которого заведомо позволит обслужить все имеющиеся на заданную дату обязательства (долги).

Одна из главных проблем финансовой математики и финансовой инженерии состоит в том, чтобы выявить условия, при которых подобное снижение риска осуществимо. И если это так, то определить начальный капитал, делающий возможным подобное хеджирование.

Одним из основных факторов снижения риска выступает отрицательная коррелированность эффективностей портфельных компонентов. В связи с этим соответствующие стратегии хеджирования основываются на противопоставлении опционов на акции и самих акций, а также облигаций различной срочности.

Известно, что активы с отрицательно коррелированными доходностями снижают риск портфеля. Данное свойство применяют для получения защищенных от риска финансовых вложений, сочетая те направления, у которых возможные уклонения доходностей от их ожидаемых значений противоположны.

Этим, в том числе, объясняется становление на развитых финансовых рынках биржевой торговли по заключению контрактов с опционами и фьючерсами
- одними из основных финансовых инструментов, относящихся к производным ценным бумагам и обладающих хеджирующими достоинствами. О масштабах торговли можно судить хотя бы потому, что, например, на Нью-Йоркской бирже в дневном обороте заключаются 3,4 млн. опционных контрактов. Если учесть, что каждый единичный контракт - это сделка на куплю или продажу 100 акций, то, следовательно, ежедневно было задействовано порядка 340 млн. акций.

Высокий спрос на фьючерсы и опционы поддерживается, в отличие от акций, благодаря заинтересованности инвесторов в снижении портфельного риска и вопреки неблагоприятным значениям ожидаемой доходности (низкая) и риска (высокий). Для удачливых инвесторов достигаемые здесь эффективности могут быть намного выше, чем по акциям, что, впрочем, уравновешивается, в силу контрактного характера этих бумаг, проигрышем "оппонентов".

Проиллюстрируем на примере акции и колл-опциона полярность изменения доходностей финансового актива и заключенного на него срочного контракта.
Пусть для определенности это будет европейский тип опциона «при деньгах»
(контрактная цена равна текущему курсу), который дает право на дату покупки акции по цене, равной текущей котировке S, и допустим, что за контрактный срок Т дивиденды на акцию выплачиваться не будут.

При удорожании акции до уровня St > S держатель опциона воспользуется своим правом и эмитент вынужден будет исполнить контракт по заниженной цене. В результате его брутто-потери (без учета премии) составят величину fт = ST - S, равную тому выигрышу, который он имеет как владелец акции
(происходит перекачка выигрыша по акции в карман держателя опциона). В противоположной ситуации, если произойдет понижение цены (ST < S), он потеряет по акции, но выиграет по опциону, (получит премию без вычетов).

На рынке ценных бумаг отмеченная разнонаправленность обнаруживает себя через отрицательную статистическую связь (корреляцию) доходностей по акциям и опционам.

Этот пример подсказывает, в частности, один из доступных способов получения безрискового портфеля через соблюдение хеджирующей пропорции между числом проданных колл-опционов (короткая позиция), в расчете на одну купленную акцию. Заметим, что разнообразие опционных позиций (2 х 2 = 4) по вариантам сделки (купить, продать) и видам опционов ("колл", "пут") позволяет прийти к другим вариантам отрицательных корреляций, например сочетать покупку акций и пут-опционов на нее. Это, в свою очередь, расширяет возможности составления хеджирующих смесей.

В качестве еще одного варианта отрицательной коррелированности рассмотрим разнопериодные облигации. В дальнейшем будет показано, как это свойство позволяет решать "защитные" задачи от риска, связанного с изменением процентной ставки. Для простоты ограничимся обсуждением бескупонных облигаций.

В общем случае разные периоды будут отличаться эффективностями вложений. Информация об этом содержится в кривой доходности (yield curve), отражающей зависимость доходности к погашению от срока выпуска до погашения. Взаимоотношение между доходностью и срочностью долговых контрактов (облигаций) называется еще временной структурой процентных ставок (term structure of interest rates). Практически эта кривая строится по текущим рыночным ценам на государственные долговые обязательства
(которые признаются безрисковыми) различных сроков погашения. Обычно кривая доходности имеет положительный наклон, то есть ценные бумаги с большим сроком до погашения имеют более высокую доходность.

В повседневной деятельности инвесторы в зависимости от своих запросов опираются на различные варианты кривых доходности. Для сравнительного анализа временной структуры ими привлекаются как процентные ставки, выводимые из текущих котировок однотипных бумаг с разными датами эмиссии, например трехмесячных ГКО, так и кривые доходности, отслеживающие динамику ее изменения и персонифицированные по выпускам. Наличие подобной информации позволяет менеджеру активно управлять портфелем облигаций, занимаясь либо его комплектацией, либо выбором времени продажи одного выпуска и купли другого, либо и тем и другим.

Остановимся на двух способах инвестирования в зависимости от длительности ценных бумаг с фиксированной доходностью:

. для краткосрочных облигаций - это покупка и хранение их до срока погашения, а затем реинвестирование поступивших средств;

. другой вариант V игра на кривой доходности при наличии определенных условий. Одно из условий состоит в том, что кривая доходности имеет наклон вверх. Другое условие - это уверенность инвестора в том, что кривая доходности в будущем не изменится.

При данных ограничениях инвестор, играющий на кривой доходности, покупает ценные бумаги, имеющие более длительный срок до погашения, чем это ему в действительности необходимо, а затем продает их до срока погашения, получая таким образом некоторую дополнительную прибыль.

Рассмотрим инвестора, который вкладывает средства в 90-дневные казначейские векселя. В данный момент они продаются по 98,25 долл. при номинале в 100 долл., то есть их доходность составляет (за год)(
(100-98,25) / 98,25 * (365 / 90) * 100 = 7,22%.

Однако 180-дневные казначейские векселя продаются по 96 долл., что дает большую доходность: (100-96) / 96 * (365 / 180) * 100 = 8,45%.

Изобразим возрастающую кривую доходности, на которой расположены эти значения.

[pic]

Рис.3.2.1 Кривая доходности казначейских векселей.

Согласно этой кривой за 90 дней до срока истечения ожидаемая цена продажи длинных векселей будет равна дисконтированной по ставке 7,22% величине их номинала, что, как легко убедиться, даст 98,25 долл. Заметим, что это значение совпадает с текущей ценой 90-дневных векселей, поскольку в соответствии со сделанным предположением кривая доходности не поменялась за
90 дней. Это означает, что ожидаемая ставка доходности от перепродажи составит: (98,25-96,00) / 96,00 * (365 / 90) * 100 = 9,5%.

Итак, ожидаемая доходность при игре по кривой выше, чем доходность
"ожидания" по короткой облигации (9,5 > 7,22). Данное явление происходит потому, что инвестор ожидает получить прибыль за счет досрочной реализации
180-дневных векселей, которые были первоначально приобретены.

Таким образом, с точки зрения доходности из двух альтернатив - покупка и погашение 90-дневных векселей или покупка 180-дневных бумаг и их продажа через те же 90 дней - вторая оказывается предпочтительнее.

Разумеется, что для убывающей кривой доходности вывод поменяется на противоположный. Если же эффективности не зависят от горизонта погашения
(доходность постоянна), альтернативы становятся равновыгодными.

Ситуационно подходящий срок погашения может следовать календарным обязательствам инвестора, например необходимости покрыть задолженность в определенном объеме на определенную дату. Допустимо, конечно, отложить требуемую сумму и держать ее до наступления удобного момента. Но разумнее обойтись меньшей суммой и наращивать ее до нужного размера с помощью облигаций. Для этого можно купить облигации с погашением на нужный период или воспользоваться более короткими бумагами и реинвестированием. Еще один способ - вложиться в облигации с превосходящим периодом и продать их по срочности обязательства.

Следует иметь в виду, что в реальности будущие процентные ставки случайны. Поэтому как реинвестирование (короткие бумаги), так и игра на кривой доходности более рискованны, чем просто покупка бумаг с подходящим сроком погашения.

В самом деле, при многошаговом наращении по однопериодным бумагам и преждевременной продаже длинных бумаг результаты будут зависеть от случайных в будущем ставок по формулам начисления и соответственно дисконтирования по сложным процентам. Отсюда понятно, что получаемые по каждому варианту изменения в выигрышах будут по разному реагировать на изменение процентных ставок: копируя их для коротких бумаг и отрицая для длинных.

К примеру, пусть для простоты кривая доходности горизонтальна, то есть доходность к погашению не зависит от времени погашения t. Иначе говоря, текущие Р[pic], и номинальные Ft стоимости связаны одной той же (в отличие от предыдущего примера) ставкой дисконтирования г:

Pt(l+r)[pic] = Ft, t=l,2, ..., то есть все контракты независимо от срока их действия имеют одну и ту же внутреннюю норму доходности.

Обозначим базовую процентную ставку, действующую в настоящий момент, через г0. Для покрытия задолженности D на дату Т можно воспользоваться одним из трех вариантов вложения: в однопериодные, Т-периодные и в облигации с погашением позже долга (L > Т) и номиналом
D(l + r[pic])L-T.

При начальном капитале I = D(l + r0)[pic] и неизменной в будущем процентной ставке все три способа, приуроченные к моменту выплаты Т
(разовое погашение, реинвестирование, досрочная продажа), финансово эквивалентны и безрисковы. Независимо от случайных изменений процентной ставки первый способ (покупка Т-бумаг и хранение их до срока погашения) остается безрисковым и обеспечивает обслуживание долга за| счет вырученных при погашении средств D.

Если в момент, следующий за настоящим, ставка вырастет до величины г > го, то результат реинвестирования D1 превысит величину долга D: D1
= I(1+ r)[pic] = D((1 + r)/(1 + r0))[pic] > D, а игра на кривой доходности приведет к недостаче: D2 = I(1 + r0)[pic]/(1 + r)[pic] = D((1 + r0) / (1 + r) < D.

Таким образом, доходность реинвестирования (короткие бумаги) станет выше, а доходность перепродажи (длинные бумаги) снизится.

При падении ставки (г < го) выводы поменяются на симметричные. Отсюда видно, что случайные доходности активов, предшествующих долгу и следующих за ним, меняются разнонаправленно, то есть имеют отрицательную корреляцию.

Известны: исходная цена бумаги, дивидендный доход в процентах, безрисковая процентная ставка, страйк, срок опционного контракта или срок до его исполнения. Далее есть варианты расчета. Если известна волатильность подлежащего актива, можно посчитать теоретическую цену опциона, и наоборот, если известна фактическая цена опциона, можно оценить соответствующую волатильность актива. Среди исходных данных мы не найдем расчетную доходность актива, потому что, согласно результатов Блэка и Шоулза, теоретическая цена опциона не зависит от расчетной доходности подлежащего актива.

Итак, мы можем оценить, насколько сильно теоретическая цена опциона отличается от фактической и тем самым сделать косвенную оценку эффективности использования опционов. Но может ли такая оценка быть количественной? Что, если я приобретаю не один опцион, а выстраиваю опционную комбинацию? Каков инвестиционный эффект от покрытия опционом подлежащего актива?

Чтобы ответить на перечисленные вопросы, нужно как бы отстраниться от всего достигнутого в опционной теории и посмотреть на проблему совсем с другой стороны – а именно так, так, как на нее смотрит классический инвестор. А он задается простым вопросом: если я покупаю по известной цене один опцион или некоторую опционную комбинацию, на какой эффект с точки зрения доходности и риска своих вложений я могу рассчитывать?

Умея рассчитывать доходность и риск одного или группы опционов, можно перейти к оценке того же для опционных портфелей.

Введем следующие обозначения, которые будем употреблять в дальнейшем:

Входные данные (дано):

T – расчетное время (срок жизни портфеля или время до исполнения опционного контракта);

S0 – стартовая цена подлежащего опционам актива; zc – цена приобретения опциона call; zp – цена приобретения опциона put; xc - цена исполнения опциона call; xp - цена исполнения опциона put;

ST – финальная цена подлежащего опционам актива в момент Т (случайная величина); rT – текущая доходность подлежащего актива, измеренная в момент времени T по отношению к стартовому моменту времени 0 (случайная величина);

[pic]- среднеожидаемая доходность подлежащего актива;

(r – среднеквадратическое отклонение (СКО) доходности подлежащего актива;

Выходные данные (найти):

IT – доход (убыток) по опциону (комбинации), случайная величина;

RT – текущая доходность опциона (комбинации), измеренная в момент времени T по отношению к стартовому моменту времени 0 (случайная величина);

[pic]- среднеожидаемая доходность опциона (комбинации);

(R – СКО доходности опциона (комбинации);

QT – риск опциона (комбинации).

Далее по тексту работы все введенные обозначения будут комментироваться в ходе их использования.

Также мы дополнительно оговариваем следующее:

1. Мы не рассматриваем возможность дивидендных выплат (чтобы не усложнять модель).

2. Здесь и далее мы будем моделировать опционы только американского типа, т.е. такие, которые могут быть исполнены в любой момент времени на протяжении всего срока действия опциона. Это необходимо, чтобы не требовать синхронизации срока жизни портфеля на подлежащих опционам активах и сроков соответствующих опционных контрактов.

Общепринятым модельным допущением к процессу ценового поведения акций является то, что процесс изменения котировки является винеровским случайным процессом, и формула Блэка-Шоулза тоже берет это предположение за исходное.
Существуют определенные ограничения на использование вероятностей в экономической статистике. Но, поскольку этот инструмент учета неопределенности является традиционным и общеупотребительным, я хочу оформить свои результаты в вероятностной постановке, при простейших модельных допущениях с использованием аппарата статистических вероятностей.
А затем, по мере накопления опыта моделирования, мы будем усложнять модельные допущения и одновременно переходить от статистических вероятностей к вероятностным распределениям с нечеткими параметрами, используя при этом результаты теории нечетких множеств. Задача эта в целом выходит за рамки данной монографии, но заложить основы этой теории мы сможем уже здесь.

Посмотрим на винеровский ценовой процесс c постоянными параметрами (
(коэффициент сноса, по смыслу – предельная курсовая доходность) и (
(коэффикциент диффузии, по смыслу – стандартное уклонение от среднего значения предельной доходности). Аналитическое описание винеровского процесса:

[pic] (3.48) где z(t) – стандартный винеровский процесс (броуновское движение, случайное блуждание) с коэффициентом сноса, равным нулю и коэффициентом диффузии, равным единице.

Если принять, что начальное состояние процесса известно и равно S0, то мы можем, исходя из (2.1), построить вероятностное распределение цены ST в момент T. Эта величина, согласно свойств винеровского процесса как процесса с независимыми приращениями, имеет нормальное распределение со следующими параметрами:

- среднее значение:

[pic]; (3.49)

- среднеквадратичное отклонение (СКО) величины ln ST/S0:

[pic] (3.50)

В принципе, для моих последующих построений вид вероятностного распределения цены подлежащего актива несущественен. Но здесь и далее, для определенности, мы остановимся на нормальном распределении. Его плотность обозначим как

[pic] (3.51)

Примерный вид плотности нормального распределения вида (3.51) представлен на рис. 3.2.2.

[pic]

Рис. 3.2.2. Примерный вид плотности нормального распределения

Теперь, сделав все базовые допущения к математической модели, мы можем переходить непосредственно к процессу вероятностного моделирования опционов и их комбинаций.

Приобретая опцион call, инвестор рассчитывает получить премию как разницу между финальной ценой подлежащего актива ST и ценой исполнения опциона xc. Если эта разница перекрывает цену приобретения опциона zc, то владелец опциона получает прибыль. В противном случае имеют место убытки.

Случайная величина дохода по опциону связана со случайной величиной финальной цены подлежащего актива соотношением 3.49.

[pic] (3.52)

В правой части (3.52) все параметры являются известными и постоянными величинами, за исключением ST, которая является случайной величиной с плотностью распределения (3.51).

А текущую доходность по опциону call мы определим формулой

[pic] (3.53)

Представление (3.49), когда стартовая и финальная цены актива связаны экспоненциальным множителем, является неудобным для моделирования.
Аналогичные неудобства вызывает представление доходности на основе степенной зависимости. Именно поэтому мы оперируем категорией текущей доходности как линейной функции дохода и финальной цены. Предполагая нормальность распределения финальной цены актива (что соответствует винеровскому описанию ценового процесса), мы автоматически таким образом приходим к нормальному распределению текущей доходности. Построенная линейная связь текущей доходности и цены является полезной особенностью, которая потом может быть удачно использована в ходе вероятностного моделирования.

Определим плотность (I(y) распределения дохода IT по опциону как функции случайной величины ST. Воспользуемся известной формулой. Если исходная случайная величина X имеет плотность распределения (X(x), а случайная величина Y связана с X функционально как Y=Y(X), и при этом существует обратная функция X=X(Y), тогда плотность распределения случайной величины Y имеет вид

[pic]. (3.54)

В нашем случае, исходя из (3.52),

[pic] (3.55) dST/dIT = 1, IT > -zc. (3.56)

Мы видим, что в точке IT = -zc плотность (I(y) приобретает вид дельта-функции. Необходимо определить множитель при дельта-функции. Это можно сделать косвенным образом. На участке, где функция ST(IT) дифференцируема, в силу (3.54)-( 3.58) выполняется

[pic] IT > -zc. (3.57)

В силу нормирующего условия справедливо

[pic] (3.58) откуда, в силу (2.10), искомый множитель K есть

[pic] (3.59)

Множитель K есть, таким образом, не что иное как вероятность события
ST < xc. При наступлении такого события говорят, что опцион call оказался не в деньгах. Это событие – условие отказа от исполнения call-опциона и прямые убытки в форме затрат на приобретение опциона.

Наконец, итоговое выражение для (I(y)

[pic] (3.60) где

[pic] (3.61)

На рис. 3.2.2 представлен примерный вид плотности вида (3.60).

[pic]

Рис. 3.2.2. Примерный вид плотности усеченного распределения

Видно, что мы перешли от нормального распределения цен к усеченному нормальному распределению доходов. Но это не классическое усеченное распределение, а распределение, функция которого претерпевает разрыв первого рода в точке с бесконечной плотностью.

Теперь нетрудно перейти к распределению доходности (R(v), пользуясь
(3.53), (3.54) и (3.60):

[pic] (3.62)

Плотности вида (3.60) и (3.62) – бимодальные функции.

Теперь оценим риск инвестиций в call опцион. Мне думается, что правильное понимание риска инвестиций сопряжено с категорией неприемлемой доходности, когда она по результатам финальной оценки оказывается ниже предельного значения, например, уровня инфляции в 4% годовых. Это значение близко к текущей доходности государственных облигаций, и тогда ясно, что обладая сопоставимой с облигациями доходностью, опционный инструмент значительно опережает последние по уровню риска прямых убытков
(отрицательной доходности).

Поэтому риск инвестиций в опцион call может быть определен как вероятность неприемлемой доходности по формуле

[pic] (3.63) где (R(v) определяется по (3.62).

Среднеожидаемая доходность вложений в опцион определяется стандартно, как первый начальный момент распределения:

[pic] (3.64)

Среднеквадратическое отклонение доходности call опциона от среднего значения также определяется стандартно, как второй центральный момент распределения

[pic] (3.65)

Рассмотрим важные асимптотические следствия полученных вероятностных форм. Для этого установим связь между доходностями call опциона и подлежащего актива, с учетом (3.52) и (3.53):

[pic], (3.66) где

[pic] (3.67)

Видим, что доходность опциона call и подлежащего актива связаны кусочно-линейным соотношением, причем на участке прямой пропорциональности это происходит с коэффициентом (, который собственно, и характеризует фактор финансового рычага (левериджа). Участок прямой пропорциональности соответствует той ситуации, когда опцион оказывается в деньгах. Поэтому, с приближением вероятности K вида (3.49) к нулю, выполняются следующие соотношения

[pic] (3.68)

То есть между соответствующими параметрами подлежащего актива на участке, когда опцион оказывается в деньгах, возникает линейная связь посредством левериджа. С ростом среднеожидаемой доходности актива растет и средняя доходность call опциона, а с ростом волатильности актива растет также и волатильность опциона.

Итак, мы получили вероятностные формы для описания доходности и риска по вложениям в опцион call. Действуя аналогичным образом, мы можем получать подобные формы для опционов другой природы, а также для их комбинаций друг с другом и с подлежащими активами.

Приобретая опцион put, инвестор рассчитывает получить премию как разницу между ценой исполнения опциона xp и финальной ценой подлежащего актива ST. Если эта разница перекрывает цену приобретения опциона zp, то владелец опциона получает прибыль. В противном случае имеют место убытки.

Надо сказать, что приобретение опциона put без покрытия подлежащим активом не является традиционной стратегий. Классический инвестор все же психологически ориентируется на курсовой рост приобретаемых активов. С этой точки зрения стратегия классического инвестора – это стратегия «быка». А покупка put опциона без покрытия – эта «медвежья» игра.

Обычная логика использования опциона put – это логика отсечения убытков с фиксацией нижнего предела доходности, который не зависит от того, насколько глубоко провалился по цене подлежащий актив. Но для нас не имеет значения, какой стратегии придерживается инвестор. Мы понимаем, что опцион put является потенциальным средством извлечения доходов, и нам эту доходность хотелось бы вероятностно описать.

Проведем рассуждения по аналогии с предыдущим разделом работы.
Случайная величина дохода по опциону связана со случайной величиной финальной цены подлежащего актива соотношением.

[pic] (3.69)

А текущая доходность по опциону put определяется формулой

[pic] (3.70)

Используем все соображения о получении плотностей распределения, выработанные в предыдущем разделе работы. В нашем случае, исходя из (3.69)

[pic] (3.71)

|dST/dIT| = 1, IT > -zp.
(3.72)

Интересно отметить, что в случае опциона call цена подлежащего актива и доход по опциону связаны возрастающей зависимостью, а в нашем случае - убывающей. То есть чем хуже чувствует себя актив, тем лучше держателю непокрытого опциона (если, конечно, инвестор заодно не владеет и самим подлежащим активом).

Множитель K при дельта-функции в точке IT = -zp есть

[pic]- (3.73) вероятность события ST > xp. Опцион оказывается не в деньгах, что есть условие отказа от исполнения put опциона и прямые убытки в форме затрат на приобретение этого опциона.

Итоговое выражение для плотности распределения (I(y) случайной величины дохода по опциону put имеет вид

[pic] (3.74)

Плотность вида (2.27) – это усеченный с двух сторон нормальный закон плюс дельта-функция на границе усечения. С этой точки зрения качественный вид зависимости (2.27) повторяет вид того же для опциона call в силу симметрии нормального распределения. При произвольном распределении финальной цены результаты были бы другими.

Теперь нетрудно перейти к распределению доходности (R(v), пользуясь
(3.69), (3.70) и (3.71):

[pic] (3.75)

Разумеется, отмечаем бимодальность (3.74) и (3.75).

Поэтому риск инвестиций в опцион put может быть определен по формуле

[pic] (3.76) где

[pic] (3.77) а (R(v) определяется по (3.75).

Среднеожидаемая доходность вложений в опцион и СКО определяются по
(2.64) и (2.65) соответственно.

Рассмотрим асимптотические следствия по аналогии с call опционом. Для этого установим связь между доходностями put опциона и подлежащего актива, с учетом (3.69) и (3.70):

[pic], (3.78) где

[pic] (3.79)

Видим, что доходность опциона put и подлежащего актива связаны кусочно- линейным соотношением, причем на участке прямой пропорциональности это происходит с коэффициентом (, который собственно, и характеризует фактор финансового рычага (левериджа).Участок прямой пропорциональности соответствует той ситуации, когда опцион оказывается в деньгах. Поэтому, с приближением вероятности K вида (7.26) к нулю, выполняются следующие соотношения

[pic] (3.80)

То есть между соответствующими параметрами подлежащего актива на участке, когда опцион оказывается в деньгах, возникает линейная связь посредством левериджа. С ростом средней доходности актива средняя доходность put опциона падает, а с ростом волатильности актива волатильность опциона также растет.

В начале года инвестор приобретает за zc = 10 ед. цены опцион call на подлежащий актив со стартовой ценой S0 = 100 ед. Цена исполнения опциона xc
= 100 ед., опцион американский, срочностью 1 год. Поскольку цена исполнения совпадает со стартовой ценой, то покупаемый опцион является опционом в деньгах. Инвестор ориентируется на следующие параметры доходности и риска подлежащего актива: текущая доходность r = 30% годовых, СКО случайной величины текущей доходности (r = 20% годовых. В пересчете на финальную цену
ST это означает, что через время Т = 0.5 лет подлежащий актив будет иметь нормальное распределение ST с параметрами sT = 115 ед. и (S = 10 ед.
Требуется определить доходность и риск опциона в момент времени Т = 0.5 года.

Все полученные соотношения реализованы в компьютерной программе.
Расчет по формулам (3.63) - (3.65) дает QT = 0.335, [pic]= 105.8% годовых и
(S = 188.5% годовых. Одновременно отметим: поскольку вероятность того, что опцион не в деньгах, мала (0.066), то полученные значения моментов близки к своим асимптотическим приближениям (3.68) [pic]= 100% и (S = 200% годовых соответственно.

Результаты наглядно показывают то, что опцион – это одновременно высокорисковый и высокодоходный инструмент. Высокая доходность достигается за счет левериджа: не вкладывая деньги в подлежащий актив, инвестор тем не менее получит по нему возможный доход и не будет участвовать в убытках.
Другое дело, что обычно инвестор балансирует на грани прибылей и убытков, ибо все ищут выигрыша, и никто не станет работать себе в убыток. Поэтому для call-опционов в деньгах разница между среднеожидаемой ценой подлежащего актива и ценой приобретения опциона обычно колеблется вокруг цены исполнения. Это означает, что вложения в непокрытые опционы с точки зрения риска сопоставимы с игрой в орлянку. Для put опциона в деньгах сопоставимыми являются цена исполнения, с одной стороны, и сумма цены опциона и ожидаемой цены подлежащего актива – с другой стороны.

Исследуем рынок полугодовых call-опционов компании IBM. Это можно сделать, воспользовавшись материалами по текущим котировкам опционов на сервере MSN. Исследуем вопрос, какие из обращающихся на рынке call-опционы нам предпочтительнее покупать. Для этого нам нужно задаться прогнозными параметрами распределения доходности подлежащего актива, близкими к реальным. Это будет как бы тот ранжир, которым будут вымеряться опционы выделенной группы.

Взглянем на вектор исторических данных IBM за прошедший квартал
(рис.3.2.3). Процесс существенно нестационарен, поэтому стандартной линейной регрессией пользоваться нельзя. Глядя на график, зададимся умеренной оценкой доходности порядка 30% годовых и СКО доходности в 30% годовых. Эти параметры и примем за базовые.

Стартовая цена подлежащего актива на дату покупки опциона – 114.25$.
Соответственно, через полгода мы должны иметь финальное распределение цены подлежащего актива с параметрами: среднеее – 131$, СКО – 17$.

[pic]

Рис. 3.2.3 Ценовая динамика call-опционов компании IBM

В таблицу 3.2.1 сведены значения доходностей и рисков по каждой группе опционов.

Таблица 3.2.1
|# |Symbol |Strike |Option |Risk |Return, |Ret/Risk |Rank |
| | |price,$|Price,$| |sh/ y | | |
|1 |IBMDP |80 |35.0 |0.215 |0.933 |4.3 |2 |
|2 |IBMDQ |85 |37.6 |0.363 |0.468 |1.3 | |
|3 |IBMDR |90 |29.2 |0.279 |0.822 |3.0 |3 |
|4 |IBMDS |95 |22.8 |0.244 |1.059 |4.5 |1 |
|5 |IBMDT |100 |21.5 |0.314 |0.817 |2.6 |4 |
|6 |IBMDA |105 |18.9 |0.361 |0.658 |1.8 | |
|7 |IBMDB |110 |17.3 |0.435 |0.393 |0.9 | |
|8 |IBMDC |115 |13.5 |0.456 |0.246 |0.5 | |

Из таблицы 3.2.1 видно, что безусловными фаворитами являются опционы
№№ 1 и 4. Все прочие опционы обладают несопоставимыми характеристиками, они явно переоценены.

Проведем аналогичное исследование put опционов в соответствии с данными примера 2. Результаты расчетов сведены в таблицу 3.2.2

Таблица 3.2.2
|# |Symbol |Strike |Option |Risk |Return, |
| | |price, $ |Price, $ | |sh/ y |
|1 |IBMPF |130 |22.3 |0.93 |-0.381 |
|2 |IBMPG |135 |26.9 |0.929 |-0.512 |
|3 |IBMPH |140 |32.2 |0.934 |-0.638 |
|4 |IBMPI |145 |24.1 |0.763 |-0.273 |
|5 |IBMPJ |150 |27.5 |0.738 |-0.281 |
|6 |IBMPK |155 |34.6 |0.785 |-0.428 |
|7 |IBMPL |160 |48.1 |0.91 |-0.701 |

Видно, что при наших инвестиционных ожиданиях put опционы являются совершенно непригодными для инвестирования инструментами. Видимо, рынок ждет глубокого падения акций IBM и, соответственно, запрашивает высокие опционные премии за риск.

Решим обратную задачу: каких параметров акций IBM через полгода ждет рынок,чтобы инвестирование в put опционы представлялось этому рынку справедливым делом с точки зрения критериев доходности и риска. Возьмем для рассмотрения опцион IBMPC ценой 13.1$ и ценой исполнения 115$ и будем варьировать величинами ожидаемой доходности и риска подлежащего актива.
Результаты расчетов сведены в таблицу 3.2.3.

Таблица 3.2.3
|# |IBM STD, sh/y |IBM return, |Option risk |Option return, |
| | |sh/y | |sh/ y |
|1 |0.1 |-0.1 |0.908 |-0.957 |
|2 | |-0.2 |0.630 |-0.136 |
|3 | |-0.3 |0.252 |0.730 |
|4 |0.2 |-0.1 |0.747 |-0.711 |
|5 | |-0.2 |0.566 |-0.053 |
|6 | |-0.3 |0.369 |0.632 |
|7 |0.3 |-0.1 |0.671 |-0.528 |
|8 | |-0.2 |0.544 |-0.064 |
|9 | |-0.3 |0.412 |0.375 |

Видно, что рынок настроен на тактическое снижение цены подлежащего актива в темпе порядка (-30%) годовых. Только в этом диапазоне мы имеем приемлемые риски и высокие степени доходности инвестиций в опционы – такие, чтобы упомянутый риск оправдать.

В первой части данной главы мы получили вероятностную интерпретацию цены долгового инструмента. Зная матожидание и дисперсию цены, мы можем оценивать то же для текущей доходности. И тогда мы можем решать задачу
Марковица, отыскивая максимум доходности портфеля при фиксированном среднеквадратичном отклонении портфеля.

Во второй части главы мы рассмотрели основные аспекты хеджирования как страхования рисков. Рассмотрели как производятся расчеты по инвестициям в производные инструменты. Производные инструменты, как основной инструмент по снижению рисков, пользуется большой популярностью на мировых рынках.

Заключение

В работе исследованы теоретические и прикладные аспекты финансового управления инвестиционными рисками с использованием ценных бумаг.

Практическая значимость работы состоит в том, что применение рассмотренных моделей поможет лучше управлять собственными и клиентскими рисками, снизить возможности потерь и получить дополнительную прибыль в деятельности российских банков.

В соответствии с целями и задачами исследования были рассмотрены следующие группы проблем: в первой главе одна из проблем была связана с анализом теоретических аспектов управления инвестиционными рисками. Для изучения предпосылок финансового управления рисками в качестве исходной базы было принято положение о том, что возникновение моделей по снижению инвестиционных рисков было определено новыми потребностями финансовых рынков, возникшими в последние десятилетия. Появление "новых финансовых продуктов и услуг" помогло рынкам сохранить стабильность и управляемость.

Важнейшими причинами, из-за которых стали активнее использовать методы по управлению инвестиционными рисками: усиление неравномерности экономического развития и международная интеграция, периодические финансовые кризисы в различных странах, концентрация рисков у банковских заемщиков, глобализацией рисков хозяйственной деятельности на формирующихся рынках ("emerging markets"), развитие внебалансовых операций банков, усложнение финансовых потребностей их клиентов.

Выделим основные моменты по оценке инвестиционных рисков, на которые нужно обратить внимание во второй главе работы. Ожидаемая доходность служит мерой потенциального вознаграждения, связанного с портфелем. Стандартное отклонение рассматривается как мера риска портфеля. Ожидаемая доходность портфеля является средневзвешенной ожидаемой доходностью ценных бумаг, входящих в портфель. В качестве весов служат относительные пропорции ценных бумаг, входящих в портфель. Ковариация и корреляция измеряют степень согласованности изменений значений двух случайных переменных.

Одной из распространенных моделей по оценке рисков является VaR модель. VaR – величина максимально возможных потерь, такая, что потери в стоимости данного портфеля инвестора за определенный период времени с заданной вероятностью не превысят этой величины. Таким образом, VaR дает вероятностную оценку потенциальных убытков по портфелю в течение определенного периода при экспертно заданном доверительном уровне.

В третьей главе работы мы получили вероятностную интерпретацию цены долгового инструмента. Зная матожидание и дисперсию цены, мы можем оценивать то же для текущей доходности. И тогда мы можем решать задачу
Марковица, отыскивая максимум доходности портфеля при фиксированном среднеквадратичном отклонении портфеля.

Во второй части главы мы рассмотрели основные аспекты хеджирования как страхования рисков. Рассмотрели как производятся расчеты по инвестициям в производные инструменты. Производные инструменты, как основной инструмент по снижению рисков, пользуется большой популярностью на мировых рынках.

Резюмируя все вышесказанное, можно сказать, что, в принципе, все приведенные модели по управлению инвестиционными рисками являются классикой инвестиционного анализа. На самом деле, в мире используется многочисленное количество моделей по оценке рисков. Каждая модель имеет свои недостатки и преимущества, которые устраняются или дополняются. По данным Татфондбанка можно отметить, что им применялась не одна модель по оценке риска. В результате, применение какой-либо модели по оценке риска в полной мере сейчас не применяется в силу выявленных в них недостатков.

Cписок литературы

1. Берзон Н.И. Фондовый рынок. – Вита Пресс. -1999. –С.125-131.

2. Буренин А. Рынок ценных бумаг и производных финансовых инструментов

М.: 1 Федеративная Книготорговая компания. -1998. - С.352.

3. Гитман Л.Дж., Джонк М.Д. Основы инвестирования. - М.: Дело, 1997.-

1008с.

4. Кох И.А. Аналитические модели рынка ценных бумаг. –Казань: КФЭИ.

-2001. –С.48-68.

5. Капитаненко В.В. Инвестиции и хеджирование. –Москва.( -2001. –С.157-

168.

6. Кремер Т.В. Теория вероятности. Инфра-М. -1999. –С. 201-214.

7. Кристина И. Рэй. Рынок облигаций( торговля и управление рисками. –М.(

Дело. –1999. –С. 314-320.

8. Меньшиков И.С. Финансовый анализ ценных бумаг.-М.: Финансы и статистика. –1998. –С. 101-107.

9. Рэдхед К., Хьюс С. Управление финансовыми рисками. –М.( ИНФРА-М.

–2000. –С. 162-169.
10. Ральф Винс. Математика управления капиталом. Методы анализа рисков для трейдеров и портфельных менеджеров/ Пер. с англ.: - М.: Издательский дом «АЛЬПИНА», 2000. – 401 с.
11. Рынок ценных бумаг / под ред. Галанова В.А., Басова А.И.- М.: Финансы истатистика. -1999. -С 352.
12. Шарп У., Александр Г., Бэйли Дж. Инвестиции.- ИНФРА-М. -1999. С.185-

214.
13. Артеменко О. Модель расчета предполагаемой вероятности дефолта и ее использование в оценке стоимости долговых инструментов. // Рынок ценных бумаг. –2000. -№9. –С.67-69.
14. Волкова В. Выбор акций для портфельного инвестирования.// Финансовый бизнес. –2000. -№ 2. -с. 47-48.
15. Егорова Е.Е Системный подход оценки риска. // Управление риском.

–2002. -№2. -С.12-13.
16. Демшин В. Оценка стоимости: доходный подход и безрисковая норма доходности.// Рынок ценных бумаг. –2001. -№ 12. -С. 35-39.
17. Константинов А. Портфельное инвестирование на российском рынке акций.//Финансист,2000, №8, с. 28-31.
18. Кузнецов В.Е. Измерение финансовых рисков. // Банковские технологии.

–1997. -№7. –С. 76-78.
19. Рукин А. Портфельные инвестиции. Финансово - математические методы.//

Рынок ценных бумаг, 1999, № 18, с. 45-47.
20. Слуцкин Л. Активный и пассивный портфельный менеджмент.// Банковские технологии, 1998, июль, с. 74-77.
21. Смирнов В. Экспресс – оценка стоимости акций в российских реалиях.//

Рынок ценных бумаг. –2001. -№ 12. -С. 31-35.
22. Сурков Г. Границы применимости методологии VaR для оценки рыночных рисков. // Финансист. –2002. -№9. –С. 63-71.
23. Фаррахов И.Т. Расчет лимитов межбанковского кредитования. //

Оперативное управление и стратегический менеджмент в коммерческом банке. –2001. -№4. –С. 98-104.

-----------------------
[pic]

[pic]

[pic]

[pic]


Страницы: 1, 2, 3


© 2010 БИБЛИОТЕКА РЕФЕРАТЫ