|
Основы химии - (шпаргалка)
p>Форма орбиталей и ее направленность играют существенную роль при образовании химических связей, т. к. эти два фактора определяют характер и степень перекрывания электронных облаков соединяющихся атомов.
2. 1. 5. Структура электронных оболочек атомов.
Полная электронно-энергитическая структура атомов предопределяется набором рассмотренных квантовых чисел. Главное квантовое число n определяет не только номер квантового уровня, но и указывает на число подуровней содержащихся в данном уровне. Например, при n=3, имеем третий квантовый уровень, который состоит из трех подуровней: s-, p-, d-подуровня. Чем дальше от ядра находится квантовый уровень, тем он более емкий, тем из большего числа подуровней он состоит. Число орбиталей на уровне можно определять по формуле кn=n2, а число орбиталей на подуровне, как уже указывалось, по формуле кl=2l+1. Рассмотрим теоретическую схему взаимного расположения квантовых уровней и подуровней. /Фрагмент для первых четырех уровней/. На четырех вертикальных линиях отложим значения квантовых чисел n, l, ml и ms. (рис. 2. 8. ) На первой вертикальной линии изобразим квантовые уровни соответственно значениям квантового числа n /см. рис. 2. 8. ). Мы уже знаем, что чем больше числовое значение n, тем более емкий квантовый уровень. По этому на рисунке он сделан более длинным по высоте. На второй вертикальной линии, отнесенной к квантовому числу l показано деление квантовых уровней на подуровни. Первый квантовый уровень состоит только из одного подуровня /обозначенного как s-подуровень/. Второй квантовый уровень делится уже на два подуровня: s-подуровень и р-подуровень. Третий уровень делится на три подуровня /s, p и d/, а четвертый– на четыре подуровня /s, p, d и f/.
n=4 – – – – f 4f 4f14 d 4d 4d10 p 4p 4p6 s 4s 4s2 n=3 d 3d p 3p s 3s n=2 –– p 2p 2p6 s 2s 2s2 n=1 – s 1s 1s2 n l ml ms кванто- подуровни орбитали электроны вый уро- на орбиталях вень рис. 2. 8.
Третья вертикальная линия соответствует квантовому числу ml. Здесь показано деление квантового подуровня на орбитали. Число орбиталей на подуровне числу значений, которые принимает магнитное квантовое число. s-подуровень состоит только из одной орбитали, поэтому на первомквантовом уровне имеется только одна орбиталь. р-подуровень состоит из трех орбиталей.
р-подуровень ml = –1, 0, +1 d-подуровень содержит уже пять орбиталей. d-подуровень ml = –2, –1, 0, +1, +2 f-подуровень увеличил свою емкость до семи орбиталей f-подуровень
ml = –3, –2, –1, 0, +1, +2 +3 Четвертая вертикальная линия отнесена к спиновому квантовому числу ms. Забегая вперед отметим, что это квантовое число предопределяет возможное количество электронов на орбитале. По соответствующему постулату на орбитале может быть два электрона, но они должны иметь разные спины, т. е. разные значения ms: +1/2 и –1/2. В связи с этим на четвертой вертикальной линии представлена максимальная заполняемость электронамиквантового подуровня и уровня.
На s-подуровне – 2 электрона На p-подуровне – 6 электрона На d-подуровне – 10 электрона На f-подуровне – 14 электрона
Максимальное число электронов на подуровне можно определить по формуле: К=2(2l+1). Теоретическая последовательность расположения квантовых уровней и подуровней выглядит так: 1sа2sа2pа3sа3pа3dа4sа4pа4dа4fа5sа5pа5dа5fа6sа6pа6dа6fа7sа 7pа7dа7fа… Однако при расщеплении квантовых уровней на подуровни приведенная теоретическая последовательность нарушается. Реальное расположение подуровней определяетсяправилом Клечковского, согласно которого последовательность расположения подуровней определяется суммарным значением двух квантовых чисел n и l. В том случае, когда для двух и более подуровней n + l имеет одинаковое значение, то сначала идет тот подуровень, у которого меньшее значение n. 1s – 2s – 2p – 3s – 3p – 3d – 4s – 4p – 4d – 4f – 5s –5p – 5d – 5f (n+l) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 По правилу Клечковского фактическая последовательность расположения подуровней следующая:
1sа2sа2pа3sа3pа4sа3dа4pа5sа4dа5pа6sа5dа4fа5d2–5а6pа7sа6d1а 5fа 6d2–5а7p.
Структура электронных оболочек атомов изображена на следующей схеме (рис2. 9. ):
6p 5d4 4f 14 5d1 6s 5p 4p 4d 5s 3d 4s 3p 2p 3s 2s 1s Рис. 2. 9.
2. 1. 6. Основные принципы распределения электронов в атоме. Рассмотренная электронная оболочка атома заполняется электронами в соответствии трем принципам: принципу наименьшей энергии, принципу Паули /правилу/ Гунда. Принципу наименьшейгласит, что электрон в атоме занимает тот свободный подуровень, на котором он будут иметь минимальное значение энергии. По другому, электрон остается на том подуровне, на котором обеспечивается наиболее прочная связь с ядром. Последовательность заполнения подуровней соответствует приведенному выше фактическому расположению подуровней в структуре электронной оболочки атома: 1sа2sа2pа3sа3pа4sа3d –… и т. д. /см. выше/. Принцип Паули/запрет Паули/ говорит о том, что в атоме не может быть даже двух электронов с одинаковыми значениями четырех квантовых чисел. Следствие. На орбитале может находится два электрона с различными спинами (т. е. с различными значениями спинового квантового числа: ms = +1/2 и ms = –1/2). Третий принцип – это принцип или правило Гунда /Хунда/. Он объясняет порядок заполнения электронами квантового подуровня. В пределах подуровня электроны распределяются так, что их суммарное квантовое число имело максимальное значение /сначала по одному электрону на орбиталь, а затем спаривание/. Правильным будет распределение, например, трех р-электронов таким образом: В зависимости от того, какой подуровень заполняется последними электронами, различают s-, p-, d-, f-элементы. s-элементами называют такие элементы, в атомах которых последние электроны занимают s-подуровень внешнего квантового уровня. /Например, натрий, магний, калий, кальций и др. /. р-элементами называют такие элементы, в атомах которых последние электроны занимают р-подуровень внешнего квантового уровня. /Например, углерод, кислород, хлор и др. /. d-подуровень, заполняемый последними электронами, относит элементы к d-элементам. /Например, d-элементами являются титан, хром, железо, медь, т. к. у этих элементов последние электроны занимают d-подуровень предпоследнего уровня/. f-элементами называют такие элементы, в атомах которых последние электроны занимают f-подуровень второго от вне квантового уровня. /Например, празеодим, европий, эрбий и др. /. 2. 1. 7. Изображение электронной структуры атомов при помощи электронных формул и квантовых ячеек. Электронную структуру любого атома изображают электронными формулами. В электронных формулах квантовый электронный уровень обозначают численным значением главного квантового числа n, подуровень записывают буквенным обозначением соответствующего подуровня, а число электронов на подуровне указывают степенью, стоящей у обозначения подуровня. Например, 3d5обозначает, что на d-подуровне 3-го квантового уровня находится пять электронов. Электронная формула любого элемента состоит из полного набора таких фрагментов, как указано в примере. Так, электронная формула атома титана /№22/ имеет вид: 1s22s22p63s23p64s23d2. Cумма всех степеней равна 22, это значит, что атом титана, имея заряд ядра +22, содержит на электронной оболочке 22 электрона, которые своим суммарным отрицательным зарядом (–22) компенсируют положительный заряд ядра атома, делая атом сложной электронейтральной системой. Электронные формулы удобнее составлять после рассмотрения структуры периодической системы элементов Д. И. Менделеева. Забегая вперед и основываясь на знаниях, полученных в средней школе, представим периодическую систему элементов в виде электронных формул. (рис. 2. 10. )О написании электронных формул конкретного элемента, находящегося в периодической системе, вернемся позже и рассмотрим алгоритм по которому легко научиться писать электронную формулу любого элемента. Во-вторых, структуру электронной оболочки атома изображают при помощи квантовых ячеек. I 1s2
II 2s2 2p6 III 3s2 3p6 IV 4s2 3d10 4p6 V 5s2 4d10 5p6 VI 6s2 5d1 4f14 5d9 6p6 VII 7s2 6d1 5f14 6d9 7p6 рис. 2. 10.
Квантовыми ячейками мы уже пользовались хотя и не вводили понятие “квантовая ячейка”. Квантовая ячейка–это не что иное как графическое изображение орбитали. Ее показывают клеточкой , а электроны на орбитали изображают стрелкой, стоящей в клеточке . Для s-подуровня отведена одна клеточка, так как s-подуровень имеет только одну орбиталь. Для р-подуровня выделено три ячейки ибо р-подуровень содержит три р-орбитали. d-подуровень изображают пятью ячейками, а f-подуровень– семью ячейками. Электронная структура атома титана, для которого мы уже писали электронную формулу, изображенная при помощи квантовых ячеек, выглядит так:
4p 3d 4s 3p 3s 2p 2s 1s 2. 1. 8. Об индивидуальности каждого химического элемента.
“Удостоверением личности” химического элемента можно назвать его электронную формулу. Глядя на нее химик скажет очень многое об индивидуальности данного “химического персонажа”. Мы уже знаем, что универсальной характеристикой элемента является положительный заряд ядра атома, а если смотреть еще глубже, то число положительно заряженных элементарных частиц–протонов. Увеличение их количества приводит к скачкообразному изменению свойств. Начинает действовать универсальный закон природы–закон перехода количества в качество. Однако на изменение качественное показателей элемента влияет не только число протонов, но и число нейтронов в ядре. Как уже было отмечено, элементы, имеющие одинаковое число протонов в ядре но разное количество нейтронов, названы изотопами. У каждого элемента свое число изотопов: у одного– больше, у другого –меньше. Когда в таблице Д. И. Менделеева указывают атомную массу элемента дробным числом, то это не значит, что в ядре имеется дробное число элементарных частиц, в этом случае взята средняя атомная масса всех изотопов данного элемента с учетом их количественного содержания в природе. Но если в точных экспериментах будем пользоваться его такой “усредненной” атомной массой, то это будет не совсем корректно, ибо за “усреднением” теряет свою индивидуальность данный изотоп, особенно, если изотоп радиоактивный. На практике еще больше отклоняются от истинного значения, когда пользуются не атомной массой, а массовым числом “А”, т. е. целым число, самым близким к атомной массе. Может быть, при рассмотрении индивидуальных особенностей элемента лучше брать атомную массу того изотопа, которого в процентном соотношении в природе больше, или того, который самый устойчивый /или неустойчивый/, если речь идет о радиоактивных элементах. Как видим, закон перехода количества в качество для химических элементов реализуется по двум направлениям: по протонному и по нейтронному. По протонному: появление в ядре очередного протона скачкообразно приводит к новому элементу, а по нейтронному: расширяет качество данного элемента вплоть до появления радиоактивности. Это видно на примере водорода. Если к ядру водорода добавляется протон, то это уже отрицает все качества водорода как элемента /данного индивидуума/ и переводит его в новый элемент–гелий /т. е. в новый индивидуум/. Добавление нейтрона не отрицает самого элемента водорода, а расширяет границы его качества, образуя изотоп водорода21Н /названный дейтерием 21Д / и далее изотоп 31Н /названный тритием 31Т/. С увеличением числа нейтронов элемент приобретает дополнительные признаки, в данном случае– радиоактивность. Проявление отдельными изотопами радиоактивных свойств сообщает таким элементам особую индивидуальность, можно сказать опасную индивидуальность, если рассматривать элементы с экологических позиций. В этом отношении необходимо иметь “специальную таблицу Менделеева”, в которой были бы представлены свойства радиоактивных элементов и форма их зависимости от положения в данной таблице. Такая таблица была бы полезной при использовании радиоактивных элементов в качестве “меченых атомов”, а так же для экологических аспектов. /Таблица будет представлена в соответствующем параграфе курса/. При определении индивидуальности химического элемента необходимо прежде всего условиться, для какой цели эта характеристика будет применяться. Потому что одно дело атомарное состояние химического элемента, а другое–то реальное состояние простого вещества, в котором данный элемент находиться в обычных условиях, т. е. в его стандартном состоянии. Если в современной периодической системе Д. И. Менделеева находиться 104–105 элементов, то число простых веществ возрастает до величины 250. И у каждого простого вещества своя специфическая индивидуальность. Химические свойства элемента, его “химическая индивидуальность” определяется тремя его характеристиками: размером атома, энергией ионизации и сродством к электрону. Но как оценить размеры атома? Какую величину брать за радиус атома? Толи расстояние от ядра до максимума электронной плотности /одно значение/, или расстояние от ядра до граничной поверхности, в которой содержится 95% электронного облака /это уже другое значение/, а может размеры атома определять как полу расстояние между центрами двух одинаковых атомов в простой молекуле или в кристаллической решетке. /Это уже третье значение/. Чтобы результат был корректным, для сравнения и для обоснования какой-либо закономерности всегда необходимо брать величины, полученные одним и тем же методом. Для оценки “химической” индивидуальности элементов в экосистемах надо иметь свои критерии. Эти критерии будут изложены в соответствующем курсе.
Глава 3. Периодический закон и Периодическая система элементов.
В 1969 году ученый мир отметил юбилейную дату –100-летие со дня открытия Периодического закона химических элементов. В статье, посвященной столетию этого закона академик И. В. Петрянов–Соколов писал: “ История –сурова. Она придирчиво сортирует все, что найдено и создано человеком. Очень немногое она хранит в течение века. Удивительная и привычная простота и четкость менделеевской таблицы из школьного учебника наших дней скрывает теперь от нас ту непостижимую, гигантскую кропотливую работу по освоению и переработке всего, что было найдено и познано до Менделеева, которую пришлось выполнить ему, чтобы стала возможной и осуществимой гениальная интуитивная догадка о существовании в мире Закона периодичности свойств элементов”. В прошлом веке химия стала развиваться ускоренными темпами. Накопилось большое количество опытных данных. Возникла необходимость систематизации химических элементов. Многие ученые до Менделеева принимались за эту работу, но никто не смог открыть всеобщую связь элементов, создать стройную систему, отображающую закон развития материи. Ни одна предлагаемая “Система” не могла удовлетворить ученых. Д. И. Менделеев приступая к работе, четко представил себе, какие трудности его ожидают и чем может закончиться его поиск “Системы”: либо успехом, либо неудачей, как всех его предшественников. 3. 1. Три этапа работы Д. И. Менделеева над проблемой систематики химических элементов. Работу Д. И. Менделеева над вопросами систематики химических элементов можно логически разделить на три этапа:
Открытие Периодического закона; Построение Периодической системы элементов;
Логические выводы, сделанные на основе Закона и Периодической системы. Хотя все эти этапы переплетаются друг с другом, но для правильной оценки научного подвига нашего соотечественника рассмотрим каждый из этапов отдельно.
Открытие периодического закона.
Главная заслуга Д. И. Менделеева состоит в том, что он открыл фундаментальный закон природы– Периодический закон (1869г. ). До Менделеева ни один ученый не смог обнаружить универсальной закономерности в существовании многообразия химических элементов. Ни “триады” Деберейнера, ни “октавы” Ньюлендса, ни “таблица” Мейера не отражали фундаментальной закономерности и не могли объяснить как сходство, так и различия между отдельными элементами. К моменту начала работы Д. И. Менделеева над систематикой элементов существовало всего 63 химических элемента. Расположив элементы в порядке возрастания атомных масс, Д. И. Менделеев после длительного и глубокого анализа их свойств обнаружил универсальную закономерность, выражавшуюся в периодической повторяемости свойств через определенные интервалы элементов. Следует заметить и тот факт, что в то время у ряда элементов неправильно были определены атомные массы, а значит элементы не могли находиться на своих законных местах, но вопреки этому Менделеев обнаружил закономерность. Д. И. Менделеев установил, что свойства элементов зависят от атомных масс и форма зависимости– периодическая. Менделеев сформулировал открытый им закон так: “Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных масс элементов”.
Построение периодической системы элементов.
Периодическая система является графическим изображением периодического закона, и является естественным продолжением и развитием Менделеевым идей в области систематизации химических элементов. Создавая периодическую систему элементов, Менделеев руководствовался не только атомными массами элементов, но и всей совокупностью их физических и химических свойств. Второй этап работы Д. И. Менделеева был наиболее сложным. Во-первых, атомные массы ряда элементов (Be, Zn, In, Th и др. ) были неправильно определены. Во-вторых, еще не был открыт целый ряд элементов. Со всеми трудностями Д. И. Менделеев успешно справился и система была создана. Он распределил элементы на группы сходных по свойствам элементов, исправил атомные массы и оставил места для неоткрытых элементов. Логические выводы, сделанные Менделеевым, заключаются в следующим: 1). должны существовать и должны быть открыты неизвестные в то время элементы ; 2). должны быть исправлены атомные массы ряда элементов; 3). переход от типичных металлов к типичным неметаллам не должен быть очень резким. Для некоторых элементов Менделеев оставил в таблице ряд свободных мест. Так были оставлены клеточки для элементов №21 (скандия), №31 (галлия), №32 (германия), №43 (технеция), эти элементы в течение 15 лет были открыты. Менделеев очень подробно описал физические и химические свойства некоторых элементов. После открытия элементов, их свойства, установленные опытным путем, с удивительной точностью совпадали с предсказанными Менделеевым. Будучи убежденным в том, что периодический закон отражает объективную реальность, он незамедлительно исправил атомные массы некоторых элементов ( Бериллия с 13, 5 на 9; Индия с 76, 6 на 113; Урана со 120 на 240; Тория с 116 на 232).
3. 2. Современная формулировка периодического закона.
Д. И. Менделеев прекрасно понимал, что открытый им периодический закон и составленная на его основе периодическая система элементов обладает внутренней способностью к развитию. Современная квантово-механическая теория строения атома подтвердила правильность менделеевских воззрений на периодичность свойств химических элементов. Сейчас установлено, что главной характеристикой атома любого элемента является не атомная масса, а величина положительного заряда его ядра. Заряд ядра является наиболее универсальной характеристикой атома. От величины заряда ядра зависит общее число электронов в атоме и его положение в периодической системе (номер элемента в периодической системе равен величине заряда ядра. Заряд ядра определяет число электронов). От заряда ядра зависят свойства элементов. В связи с этим внесены уточнения в формулировке периодического закона. Современная формулировка периодического закона следующая: Свойства элементов, формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов. Эта формулировка периодического закона не противоречит формулировке, данной Менделеевым. Она базируется на новых данных, которые придают закону и периодической системе научную обоснованность и подтверждают их правильность. Современная формулировка закона–это новый этап развития периодического закона, открытого Д. И. Менделеевым. Она легко объясняет те незначительные ономалии, которые встречаются в таблице Д. И. Менделеева. (Например, аргон с атомной массой 39, 948 стоит впереди калия, атомная масса которого меньше, 39, 102; теллур с атомной массой 127, 60 стоит впереди йода, атомная масса которого равна 126, 90). 3. 3. Структура современной периодической системы элементов. Д. И. Менделеев постоянно совершенствовал структуру периодической системы элементов. В 1871г он представил второй вариант системы–так называемую короткую форму таблицы. В этом варианте уже четко были выявлены различные степени сродства между элементами. Элементы разделены на восемь групп, номер группы равен высшей валентности, которую может иметь элемент. Современная периодическая система элементов в общих чертах напоминает последние варианты менделеевской таблицы. Сейчас наибольшее распространение имеют две формы периодической системы элементов: короткопериодная (табл. 3. 1. ) и длиннопериодная (табл. 3. 2. ) 105 элементов, известных в настоящее время, расположены в таблице в порядке увеличения заряда ядер атомов. Заряд ядра определяет порядковый номер элемента в периодической системе. Ключом к разгадке периодичности свойств элементов является строение электронных оболочек атомов. Современная периодическая система состоит из 7 периодов и 8 групп. Периодомназывают последовательный ряд элементов, в пределах которого происходит постепенный переход от ярко выраженных металлических к ярко выраженным неметаллическим свойствам. Например, второй период начинается типичным щелочным металлом (литием) и заканчивается двумя элементами (фтором и неоном) яркими неметаллами. Номер периода указывает на число квантовых электронных уровней в атоме и он равен значению главного квантового числа (n). Период начинается s-элементами и заканчивается p-элементами. s-элементами называют такие элементы, в атомах которых последние электроны заполняют s-подуровень внешнего квантового уровня. p-элементами–такие элементы, в атомах которых в последнюю очередь электроны заполняют p-подуровень внешнего уровня. Максимально в каждом периоде может быть только два s-элемента (например, Li и Be во втором периоде) и не более шести p-элементов (например, B, C, N, O, F, Ne во втором периоде). Первых четыре периода являются малыми периодами. Причем первый период содержит только два элемента (H, He). Структура электронной оболочки, определяемая квантовыми числами, разрешает атому иметь на первом квантовом уровне только один подуровень (s-подуровень) с одной s-орбиталью, а следовательно на одной s-орбитали может быть только два электрона с разными спинами. Второй, третий и четвертый периоды содержат по 8 элементов (s-элементов два и p-элементов шесть). Четвертый и все последующие периоды–большие. В короткопериодной системе большие периоды сложены в два ряда, но в длиннопериодной таблице большие периоды составляют один ряд. В больших периодах между s-элементами и p-элементами вклиниваются d-элементы. Максимальное число d-элементов в больших периодах–десять. d-элементами называют такие элементы, в атомах которых последние электроны заполняют d-подуровень предпоследнего уровня. Например, в четвертом периоде за двумя s-элементами (K, Ca) следует 10 d-элементов (от Sc до Zn). У d-элементов 4-го периода последние электроны заполняют d-подуровень третьего квантового уровня, т. е. 3d-подуровень. Шестой и седьмой периоды становятся еще длиннее. В этих периодах появляются f-элементы. f-элементами называют такие элементы, в атомах которых последние электроны заполняют f-подуровень третьего от вне уровня, т. е. предпредпоследнего уровня. Например f-элементы шестого периода заполняют последними электронами 4f-подуровень. Максимальное число f-элементов в периоде–четырнадцать. f-элементы идут вслед за первым d-элементов, разбивая при этом d-подуровень на две части. Так в шестом периоде после двух s-элементов (Cs и Ba) идет один d-элемент под №57 (La). Затем следует четырнадцать f-элементов (Cs–Lu) и только после них, с №72 гафния продолжается d-подуровень (Hf–Hg) и заканчивается шестой период шестью p-элементами (Tl–Rn). Аналогичная картина имеет место в седьмом периоде. В короткопериодной форме периодической системы f-элементы вынесены в отдельную строчку и располагаются под таблицей. (ряд лантаноидов и ряд актиноидов). Если внимательно рассмотреть длиннопериодную форму периодической системы, то можно заметить, что с увеличением номера периода число неметаллов в периоде уменьшается. Практически неметаллы образуют компактный “треугольник”. Периоды.
I –– –– –– –– –– –– H He II –– –– B C N O F Ne III –– –– –– Si P S Cl Ar IV –– –– –– –– As Se Br Kr V –– –– –– –– –– Te J Xe VI –– –– –– –– –– –– At Rn
В этом “треугольнике” два неметалла (H и He) являются s-элементами, остальные неметаллы относятся к p-элементам. Диагональ, выделенная рамочкой, содержит элементы, разделяющие неметаллы от металлов. Некоторые ученые выделенные рамочкой элементы, т. е. элементы, лежащие на диагональной границе треугольника (B, Si, As, Te, At), иногда называют полуметаллами или полунеметаллами по причине их двойственных свойств. Группойназывают вертикальный ряд, столбец, элементов для которых существует идентичность свойств, т. е. группа–это совокупность элементов сходных по своим химическим свойствам. Группа делится на подгруппы. Рассмотрим два типа деления группы на подгруппы. Каждое деление основывается на своих принципах. Первая форма деления группы на подгруппы известна еще из средней школы: каждая группа делится на главную и побочную подгруппы. В главную подгруппу каждой группы входят элементы больших и малых периодов, а в побочную–только элементы больших периодов (d-элементы). Так, во второй группе к главной подгруппе относятся шесть элементов (Be, Mg, Ca, Sr, Ba, Ra), а к побочной подгруппе всего три элемента (Zn, Cd, Hg). По второму типу деления каждая группа делится на три подгруппы: подгруппу типических элементов и две подгруппы полных электронных аналогов. В подгруппу типическихэлементов входят элементы малых периодов, элементов, для которых наиболее ярко выражены свойства, определяемые номером группы. Полными электронными аналогами называют элементы, в атомах которых содержится одинаковое число электронов на внешнем и предпоследнем квантовых уровнях. Так вторая группа делится на следующие три подгруппы:
Подгруппа типических элементов – Be, Mg.
Подгруппа полных электронных аналогов кальция (подгруппа кальция) – Ca, Sr, Ba, Ra. Подгруппа полных электронных аналогов цинка (подгруппа цинка) – Zn, Cd, Hg. Особняком стоит восьмая группа. Она включает в себя пять подгрупп: Подгруппу типических элементов – He, Ne. Подгруппу полных электронных аналогов криптона (подгруппа криптона) – Kr, Xe, Rn. Подгруппу железа – Fe, Ru, Os.
Подгруппу кобальта – Ko, Rh, Ir. Подгруппу никеля – Ni, Pd, Pt.
В длиннопериодной таблице элементы главных подгрупп каждой группы называют просто– элементы IA группы; элементы IIA – группы и т. д. Элементы побочных подгрупп называют элементами Б групп – элементы IB – группы, элементы IIB –группы. Например: во IIA группу входят элементы Be, Mg, Ca, Sr, Ba и Ro. A IIB группа содержит элементы Zn, Cd, Hg. 3. 4. Обзор закономерностей, выражаемых периодической системой элементов. Закономерность изменения основных характеристик атомов предопределяется рамками периодической системы элементов. Опираясь на периодический закон, периодическую систему элементов, знание электронной структуры атомов можно достаточно точно описать свойства простых и сложных веществ. Свойства элементов в простых и сложных веществах в общем случае определяется размером атома (его радиусом) и структурой электронной оболочки.
3. 4. 1. Закономерность изменения радиусов атомов.
Так как движение электрона в атоме не имеет строгой, боровской траектории, а носит волновой характер, то и размер атома не имеет строго определенной границы. За радиус атома обычно принимают теоретически рассчитанные положения максимума плотности внешнего электронного облака. Такие радиусы называют орбитальными. Практически используют эффективные радиусы, которые определены из строения молекул и кристаллов. Радиусы атомов являются одной из важных характеристик элементов, т. к. размеры атомов определяют ряд физико–химических показателей и химическую активность элементов. Изменение атомных радиусов элементов носит периодический характер. Рассмотрим, как меняют радиуса атомов в пределах одного периода и одной группы. Такое рассмотрение сделаем на группе элементов второго периода и главной подгруппы первой группы. На приведенном ниже рисунке показан характер (тенденция) изменения радиусов атомов элементов второго периода. Значения радиусов даны в ангстремах А0. (А0=10 –8см).
Li Be B C N O F А0 1, 52 1, 13 0, 88 0, 77 0, 70 0, 60 0, 66 Na – 1, 86 K – 2, 31 Характер уменьшения радиусов атомов. Rb – 2, 44 Cs –2, 62 Fr – 2, 71 рис. 3. 1.
В периодах радиуса атомов по мере увеличения заряда ядра, т. е. от начала к концу периода, уменьшается. Хотя в атомах элементов, находящихся в одном периоде, содержится одно и тоже количество электронных квантовых уровней, но по мере увеличения числа электронов происходит уменьшение радиусов атомов от начала к концу периода. Этот факт отличается тем, что при увеличении заряда ядра и числа электронов усиливается кулоновское взаимодействие между электронной оболочкой и ядром ( F=z*e/r2), которое приводит к сжатию атома. Так, в ряду элементов второго периода от Лития до Фтора радиусы атомов уменьшались примерно в 2, 5 раза. В группах сверху вниз радиусы атомов увеличиваются, т. к. с каждым новым периодом появляется еще один квантовый уровень, который начинает заполняться электронами. На рисунке стрелкой указана только общая тенденция изменения радиусов. Но это не значит, что в указанном направлении имеется линейная зависимость. На следующем рисунке отражен характер изменения радиусов атомов для интервала 100 элементов. (рис. 3. 2. ). В рядах d-элементов изменения радиусов менее значительны, чем у s- и p-элементов. У d-элементов идет заполнение электронами d-подуровня предвнешнего квантового уровня и поэтому величина сжатия атома в целом меньше, чем в случае увеличения числа электронов на внешнем уровне. В ряду d-элементов величина сжатия радиусов атомов составляет всего около 0, 3А0 (d-сжатие). В ряду f-элементов величина сжатия еще меньше. Дело в том, что у f-элементов идет заполнение f-подуровня предпредпоследнего уровня, и увеличения заряда ядра и числа электронов очень мало влияет на размеры атомов. Величина f-сжатия составляет всего 0, 1А0. Однако это незначительное изменение радиусов в ряду f-элементов влияет на свойства последующих элементов. И, естественно, сами f-элементы, имея очень близкие радиусы атомов, схожи по химическим свойствам. Полные данные по радиусам атомов представлены в Периодической системе Д. И. Менделеева, дополненной Кембелом значениями радиусов атомов. (табл. 3. 3. ). Радиусы атомов были определены рентгеноскопическим методом
3. 4. 2. Закономерность изменения энергии ионизации.
Химическую активность элемента можно оценить способностью его атома терять и приобретать электроны. Способность атома отдавать электроны количественно оценивается энергией ионизации. Энергией ионизацииназывается такое количество энергии, которое необходимо затратить для отрыва одного элемента от нейтрального атома. Энергию ионизации обозначают буквой I и выражают в кДж/моль или ЭВ/атом. A+I=A++e Многоэлектронные атомы характеризуются несколькими энергиями ионизации: I1, I2, I3, …, соответствующими отрыву первого, второго, третьего и т. д. электронов. При этом, всегда I1< I2< I3< In, т. к. с увеличением числа отрываемых электронов растет заряд образующегося положительного иона, который сильнее притягивает электроны. Для характеристики химической активности элемента обычно пользуются значением первой энергии ионизации I1(будем обозначать ее просто I). энергия ионизации тесно связана с размерами атома. Характер изменения энергии ионизации по периодам и группам рассмотрим на примере элементов второго периода и главной подгруппы первой группы. Результаты приведены на следующем рисунке. Значения I дается в ЭВ/атом.
Li Be B C N O F Ne ЭВ/атом 5, 4 9, 1 8, 3 11, 3 14, 5 13, 6 17, 4 21, 6 Na – 1, 86 K – 2, 31 Направление увеличения энергии ионизации. Rb – 2, 44 Cs – 2, 62 Fr – 2, 71 рис. 3. 3.
В периодах слева направо энергия ионизации атомов увеличивается. В группах сверху вниз–наоборот, энергия ионизации уменьшается. Из рисунка видно, что направление увеличения энергии ионизации соответствует направлению уменьшения радиусов атомов. Следовательно, чем меньше радиус атома тем труднее отрывать электрон, тем больше затрачена энергия ионизации. Однако (как это видно из рис. 3. 4. ) характер изменения энергия ионизации не соответствует прямой линии, но имеет периодический характер. В пределах каждого периода наблюдается “местные” максимумы. Это связано с порядком заполнения электронами квантовых подуровней. Во втором периоде сначала электроны заполняют s-подуровень, поэтому при переходе от элемента с электроном ns1 (Li) к элементу с электроном ns2(Be) энергия ионизации возрастает. Затем идет скачек вниз (уменьшение) обусловленный заполнением электронами p-подуровня, но далее энергия ионизации возрастает при переходе от элемента с np1 (B) к элементу с nр3 (С). Обусловленное заполнением подуровня по правилу Гунда (т. е. по одному электрону на орбиталь). Затем снова скачек вниз (уменьшение I). Начинается заполнение вторыми электронами np-подуровня. И энергия ионизации снова возрастает (от кислорода к неону). Местные максимумы и минимумы на возрастающем участке кривой в пределах подуровня отражает явление вторичной периодичности. Максимумы соответствует элементам, у которых внешние подуровни заполнены полностью ns2, np6 или наполовину np3. Это свидетельствует о повышенной устойчивости таких конфигураций. В группах (в подгруппах s- и p-элементы) сверху вниз энергия ионизации уменьшается. Это обусловлено увеличением радиусов атомов: чем больше размер атома, тем легче от него оторвать электрон, тем меньше значение энергии ионизации. В подгруппах d-элементов, кроме подгруппы скандия, как правило, сверху вниз повышается. Например:
V I1=6, 74 ЭВ/атом. Nb I1=6, 88 ЭВ/атом. Ta I1=7, 88 ЭВ/атом.
Повышение энергии ионизации в подгруппах d-элементов вызвано эффектом проникновения электронов к ядру. Согласно квантовой теории внешние электроны проникают ближе к ядру под d-подуровень. Это приводит к повышению прочности связи внешних электронов с ядром. Данные по значениям первой энергии ионизации для значительного числа атомов представлены в таблице…
3. 4. 3. Сродство к электрону и характер его изменения.
Способность атома присоединять электроны может быть количественно оценена энергией, которую обозначают понятием “сродство к электрону”. Сродством к электрону называют количество энергии E, которое выделяется в результате присоединения электрона к нейтральному атому и превращением его в отрицательно заряженный ион.
А+е=А–+Е
Сродство к электрону выражается в тех же единицах, что и энергия ионизации (кДж/моль или ЭВ/атом). Однако экспериментально его определить труднее, чем энергию ионизации. Поэтому надежные значения Е получены лишь для небольшого числа элементов. По имеющимся данным можно сделать однозначный вывод о закономерности изменения сродства к электрону по периодам и группам. Характер изменения сродства к электрону рассмотрим на примере элементов второго периода и главной подгруппы седьмой группы показан на рис. 3. 5. Li Be B C N O F Ne ЭВ/атом 0, 57 -0, 6 0, 2 1, 25 -0, 1 1, 47 3, 6 -0, 57
3, 8 – Cl Увеличение сродства к электрону 3, 5 – Br 3, 3 – I – At рис. 3. 5.
Из приведенного рисунка следует, что в периоде от начала к концу сродство к электрону увеличивается, а в группах увеличение идет в направлении снизу вверх. Можно сделать такой вывод: чем меньше радиус атома, тем легче к нему присоединяется электрон, тем больше высвобождается энергии и, следовательно, больше сродство к электрону. Однако монотонности в изменении сродства к электрону нет, как и не было ее в изменении энергии ионизации. Для элементов VII A группы, обладающих в своих периодах наименьшими радиусами, величина сродства к электрону наибольшая. Наименьшее значение сродства к электрону и даже отрицательное значение имеет место у элементов с электронными структурами s2(Be, Mg, Ca), s2p6(Ne, Ar, Kr) и с наполовину заполненным p-подуровнем, т. е. структурой s2p3(N, P, As). Это служит дополнительным доказательством повышенной устойчивости указанных конфигураций.
Страницы: 1, 2, 3, 4, 5, 6, 7
|
|